A note on Laplacian eigenvalues and domination

Jan Har
Department of Management, Tutte College, Canada

A R T I C L E I N F O

Article history:

Received 27 January 2014
Accepted 12 February 2014
Available online 4 March 2014
Submitted by D. Stevanovic

MSC:
 05C50
 05C69
 15A18
 15A42

Keywords:
Laplacian matrix
Laplacian spectral radius
Domination number

ABSTRACT

In 2005, Lu, Liu and Tian [2] published two inequalities involving the domination number and Laplacian eigenvalues of graphs. A short proof of their results is given, an error is pointed out, and improved inequalities are presented.
© 2014 Elsevier Inc. All rights reserved.

For a graph $G=(V, E)$, let $L(G) \in \mathbb{R}^{V \times V}$ be its Laplacian matrix. For $i=1, \ldots,|V|$, let $\mu_{i}(G)$ be the i th largest eigenvalue of $L(G)$ with multiplicities accounted for. Since the Laplacian matrix is positive semidefinite, $\mu_{i}(G) \geqslant 0$ for every i. We refer to [3] for more details about Laplacian matrices and their eigenvalues.

The largest eigenvalue $\mu_{1}(G)$ is also called the Laplacian spectral radius of G. For every edge e of G, the difference of Laplacian matrices $L(G)-L(G-e)$ is a positive semidefinite matrix. This implies that the Laplacian spectral radius is monotone, i.e., for every subgraph H of $G, \mu_{1}(H) \leqslant \mu_{1}(G)$.

[^0]A set D of vertices of G is a dominating set if every vertex is either in D or is adjacent to a vertex in D. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in the graph. It is NP-hard to determine the domination number of a graph [1], thus it is of interest to find nontrivial bounds on this parameter.

The paper [2] by Lu, Liu, and Tian has two main results that are listed as statements (1) and (2) below.
(1) (Theorem 8 in [2]) If G is a connected graph of order $n \geqslant 2$, then

$$
\mu_{n-1}(G) \leqslant n-\frac{n}{n-\gamma(G)}(\gamma(G)-1)
$$

The bound in (1) corresponds to Theorem 8 in [2], which has an addendum that equality holds if and only if G is isomorphic to the cycle of length 4 . However, that claim is false since K_{2} is another example, for which equality holds.

We give a short proof of an improved inequality below.

Theorem 1. If G is a graph of order n that has no isolated vertices, then

$$
\mu_{n-1}(G) \leqslant n-2(\gamma(G)-1)
$$

Proof. Let $k=\gamma(G)$. It is easy to see that G has a minimum dominating set $D=$ $\left\{x_{1}, \ldots, x_{k}\right\}$ such that for every vertex $x_{i} \in D$, there is a vertex $x_{i}^{\prime} \in V(G) \backslash D$ whose only neighbor in D is x_{i}. (This fact is well known; a proof also appears in [2] as Lemma 2.) Let H be the complement of G. The subgraph of H induced on vertices $\left\{x_{i}, x_{i}^{\prime} \mid 1 \leqslant\right.$ $i \leqslant k\}$ contains as a subgraph the graph H^{\prime} that is isomorphic to $K_{k, k}$ with a perfect matching removed. Observe that this is a $(k-1)$-regular bipartite graph and thus its Laplacian spectral radius is $2(k-1)$. By the monotonicity of the Laplacian spectral radius, we conclude that $\mu_{1}(H) \geqslant \mu_{1}\left(H^{\prime}\right)=2(k-1)$. On the other hand, eigenvalues of complementary graphs are related: $\mu_{n-1}(G)=n-\mu_{1}(H)$ (see [3]). This gives the inequality of the theorem.

Note that every graph without isolated vertices satisfies that $\gamma(G) \leqslant n / 2$, and hence $n /(n-\gamma(G)) \leqslant 2$. This shows that the inequality in Theorem 1 is an improvement over the bound in (1) and coincides with it if and only if $\gamma(G)=n / 2$.

There are many instances where the inequality of Theorem 1 is tight. It follows from the proof above that this happens if and only if $\mu_{1}(H)=2(k-1)$ (where we use the notation from the proof). If H contains an edge joining a vertex in H^{\prime} with a vertex v that is not in H^{\prime}, then it is easy to see that $\mu_{1}(H)>2(k-1)$. (To see this, consider the vector whose values are 1 on the vertices x_{i} and -1 on x_{i}^{\prime} for $i=1, \ldots, k$, and has value 0 on v, compute the Rayleigh quotient for the Laplacian matrix of this graph, and then use monotonicity.) If such a vertex does not exist, then every vertex in $V(G) \backslash V\left(H^{\prime}\right)$ is adjacent in G to all vertices in $V\left(H^{\prime}\right)$. It follows that if G has a vertex z that is not

https://daneshyari.com/en/article/4599678

Download Persian Version:
https://daneshyari.com/article/4599678

Daneshyari.com

[^0]: E-mail address: jan.har@shaw.ca.

