Linear Algebra and its Applications 449 (2014) 115–118 $\,$

A note on Laplacian eigenvalues and domination

Jan Har

Department of Management, Tutte College, Canada

A R T I C L E I N F O

Article history: Received 27 January 2014 Accepted 12 February 2014 Available online 4 March 2014 Submitted by D. Stevanovic

MSC: 05C50 05C69 15A18 15A42

Keywords: Laplacian matrix Laplacian spectral radius Domination number

ABSTRACT

In 2005, Lu, Liu and Tian [2] published two inequalities involving the domination number and Laplacian eigenvalues of graphs. A short proof of their results is given, an error is pointed out, and improved inequalities are presented.

@ 2014 Elsevier Inc. All rights reserved.

For a graph G = (V, E), let $L(G) \in \mathbb{R}^{V \times V}$ be its Laplacian matrix. For $i = 1, \ldots, |V|$, let $\mu_i(G)$ be the *i*th largest eigenvalue of L(G) with multiplicities accounted for. Since the Laplacian matrix is positive semidefinite, $\mu_i(G) \ge 0$ for every *i*. We refer to [3] for more details about Laplacian matrices and their eigenvalues.

The largest eigenvalue $\mu_1(G)$ is also called the Laplacian spectral radius of G. For every edge e of G, the difference of Laplacian matrices L(G) - L(G - e) is a positive semidefinite matrix. This implies that the Laplacian spectral radius is *monotone*, i.e., for every subgraph H of G, $\mu_1(H) \leq \mu_1(G)$.

E-mail address: jan.har@shaw.ca.

 $[\]label{eq:http://dx.doi.org/10.1016/j.laa.2014.02.025} 0024-3795 \end{tabular} 0214$ Elsevier Inc. All rights reserved.

A set D of vertices of G is a *dominating set* if every vertex is either in D or is adjacent to a vertex in D. The *domination number* $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in the graph. It is NP-hard to determine the domination number of a graph [1], thus it is of interest to find nontrivial bounds on this parameter.

The paper [2] by Lu, Liu, and Tian has two main results that are listed as statements (1) and (2) below.

(1) (Theorem 8 in [2]) If G is a connected graph of order $n \ge 2$, then

$$\mu_{n-1}(G) \leqslant n - \frac{n}{n - \gamma(G)} (\gamma(G) - 1).$$

The bound in (1) corresponds to Theorem 8 in [2], which has an addendum that equality holds if and only if G is isomorphic to the cycle of length 4. However, that claim is false since K_2 is another example, for which equality holds.

We give a short proof of an improved inequality below.

Theorem 1. If G is a graph of order n that has no isolated vertices, then

$$\mu_{n-1}(G) \leqslant n - 2(\gamma(G) - 1).$$

Proof. Let $k = \gamma(G)$. It is easy to see that G has a minimum dominating set $D = \{x_1, \ldots, x_k\}$ such that for every vertex $x_i \in D$, there is a vertex $x'_i \in V(G) \setminus D$ whose only neighbor in D is x_i . (This fact is well known; a proof also appears in [2] as Lemma 2.) Let H be the complement of G. The subgraph of H induced on vertices $\{x_i, x'_i \mid 1 \leq i \leq k\}$ contains as a subgraph the graph H' that is isomorphic to $K_{k,k}$ with a perfect matching removed. Observe that this is a (k - 1)-regular bipartite graph and thus its Laplacian spectral radius is 2(k - 1). By the monotonicity of the Laplacian spectral radius, we conclude that $\mu_1(H) \geq \mu_1(H') = 2(k - 1)$. On the other hand, eigenvalues of complementary graphs are related: $\mu_{n-1}(G) = n - \mu_1(H)$ (see [3]). This gives the inequality of the theorem. \Box

Note that every graph without isolated vertices satisfies that $\gamma(G) \leq n/2$, and hence $n/(n - \gamma(G)) \leq 2$. This shows that the inequality in Theorem 1 is an improvement over the bound in (1) and coincides with it if and only if $\gamma(G) = n/2$.

There are many instances where the inequality of Theorem 1 is tight. It follows from the proof above that this happens if and only if $\mu_1(H) = 2(k-1)$ (where we use the notation from the proof). If H contains an edge joining a vertex in H' with a vertex vthat is not in H', then it is easy to see that $\mu_1(H) > 2(k-1)$. (To see this, consider the vector whose values are 1 on the vertices x_i and -1 on x'_i for $i = 1, \ldots, k$, and has value 0 on v, compute the Rayleigh quotient for the Laplacian matrix of this graph, and then use monotonicity.) If such a vertex does not exist, then every vertex in $V(G) \setminus V(H')$ is adjacent in G to all vertices in V(H'). It follows that if G has a vertex z that is not Download English Version:

https://daneshyari.com/en/article/4599678

Download Persian Version:

https://daneshyari.com/article/4599678

Daneshyari.com