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1. Introduction

Let A be an n X n nonnegative matrix. The spectral radius (alias Perron root) of A,
denoted by p(A), is the largest modulus of eigenvalues of A. See [2,8,13,16,18,21,22] for
some known properties of the spectral radius of nonnegative matrices.

In this paper, we also consider the spectral radius of some nonnegative matrices as-
sociated with a graph. Let G be a simple undirected graph with vertex set V(G) =
{v1,...,v,} and edge set E(G).

The adjacency matrix of G is the n x n matrix A(G) = (a;;), where a;; = 1 if
v;v; € E(G) and 0 otherwise [5]. For 1 < i < n, let d; be the degree of vertex v;
in G. Let Deg(G) be the degree diagonal matrix diag(dy, ..., d,). The signless Laplacian
matrix of G is the n x n matrix Q(G) = Deg(G) + A(G) [7]. The spectral radius of the
adjacency matrix has been studied extensively (see, e.g., [6,8,12,15,19]), and the spectral
radius of the signless Laplacian matrix has also received much attention (see, e.g., [8,11,
20,23)).

Suppose that G is connected. The distance matrix of G is the n X n matrix
D(G) = (di;), where d;; is the distance between vertices v; and vj, i.e., the number
of edges of a shortest path connecting them, in G [9,14]. For 1 < ¢ < n, the transmis-
sion D; of vertex v; in G is the sum of distances between v; and (other) vertices of G.
Let Tr(G) be the transmission diagonal matrix diag(Ds, ..., D,). The distance signless
Laplacian matrix of G is the n x n matrix Q(G) = Tr(G) + D(G) [1]. The reciprocal dis-
tance matrix (alias Harary matrix) of G is the n xn matrix R(G) = (r;;), where r;; = %
for i # j, and ry; = 0 for 1 < i < n [14]. Some results have been obtained for the spectral
radius of these distance-based matrices of a connected graph (see, e.g., [8,24]).

Let A = (a;;) be an n x n nonnegative matrix. For 1 < i < n, the i-th row sum of A
is 7;(A) = 3°7_, a;j. Duan and Zhou [8] found upper and lower bounds for the spectral
radius of a nonnegative matrix using its row sums, and characterized the equality cases
if the matrix is irreducible. They also applied those bounds to the nonnegative matrices
associated with a graph as mentioned above.

For 1 < ¢ < n and an n X n nonnegative matrix A = (a;;) with r;(A) > 0, the
i-th average 2-row sum of A is defined as m;(A4) = W. For a graph G on n

ZuivjEE(G’) dj
d;

vertices with d; > 0, m;(A(G)) =
of vertex v; in G [3,17]. Huang and Weng [10] gave an upper bound for the spectral

, which is known as the average 2-degree

radius of the adjacency matrix of a connected graph with at least two vertices using its
average 2-degrees (cf. Chen et al. [4]).

In this paper, we give sharp upper and lower bounds for the spectral radius of a
nonnegative matrix with all row sums positive using the average 2-row sums, and char-
acterize the equality cases if the matrix is irreducible. Then we compare these bounds
with those using the row sums presented in [8] by examples. We also apply these results
to various matrices associated with a graph as mentioned above. Some known results are
generalized and improved.
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