

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Idempotent zero patterns [☆]

Chao Ma

Department of Mathematics, East China Normal University, Shanghai 200241, China

ARTICLE INFO

Article history: Received 2 June 2013 Accepted 23 February 2014 Available online 18 March 2014 Submitted by R. Brualdi

MSC: 15A03

15B35

15B36 05C50

Rank

Keywords: Zero pattern Idempotence 0-1 Matrix

ABSTRACT

We first characterize idempotent zero patterns. Then we determine the possible numbers of nonzero entries in an idempotent zero pattern with a given minimum rank and characterize those patterns that attain the extremal numbers. The results can be stated in terms of 0–1 matrices.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A matrix with entries from the set $\{0,*\}$ is called a zero pattern. We denote by $M_{n,k}(F)$ the set of $n \times k$ matrices over a field F. Given a field F and an $n \times k$ zero pattern $A = (a_{ij})$, we denote by $Z_F(A)$ the set of $n \times k$ matrices over F with zero pattern A; i.e.,

 [★] This research was supported by the NSFC Grant 10971070.
E-mail address: machao0923@163.com.

$$Z_F(A) = \{ B = (b_{ij}) \in M_{n,k}(F) \mid b_{ij} = 0 \text{ if and only if } a_{ij} = 0 \}.$$

Thus * indicates nonzero entries.

At a seminar last year, Professor Xingzhi Zhan posed the following problem.

Problem 1. Given a field F, characterize those square zero patterns A such that $B^2 \in Z_F(A)$ whenever $B \in Z_F(A)$.

For a given field F, we call a zero pattern which satisfies the condition in Problem 1 an idempotent zero pattern over F. We denote by $\Omega_n(F)$ the set of $n \times n$ idempotent zero patterns over F. A matrix with entries from the set $\{+,-,0\}$ is called a sign pattern. The corresponding problem on sign patterns has been extensively studied. See [2] and the references therein. In this paper, we will solve Problem 1 and a related problem.

2. Main results

We need several lemmas to establish the main results. If A is a matrix, A(i, j) denotes its entry in the i-th row and j-th column.

Lemma 1. Let F be a field with at least three elements and let $A \in \Omega_n(F)$. If A(i,j) = A(j,k) = *, then A(i,k) = *.

Proof. If j = i or k, then the result holds trivially.

Next suppose $j \neq i, k$. It suffices to exhibit a matrix $B \in Z_F(A)$ with $B^2(i,k) \neq 0$. Let all the nonzero entries of B except B(i,j) be 1. Since F has at least two nonzero elements, from $B^2(i,k) = B(i,j)B(j,k) + \sum_{l\neq j} B(i,l)B(l,k)$ we deduce that there is a nonzero value of B(i,j) in F such that $B^2(i,k) \neq 0$. Since $A \in \Omega_n(F)$, $B(i,k) \neq 0$. Thus A(i,k) = *. \square

Recall that in a digraph, a sequence of successively adjacent arcs is called a walk. The number of arcs in a walk is called the *length* of the walk. We denote by D(A) the digraph of a matrix A of order n. The vertices of D(A) are $1, 2, \ldots, n$ and (i, j) is an arc if and only if $A(i, j) \neq 0$.

Lemma 2. Let F be a field with at least three elements and let $A \in \Omega_n(F)$. If A(i,j) = 0, then there is no walk from i to j in D(A).

Proof. To the contrary, assume that there is a walk of length k from i to j. Since A(i,j)=0, (i,j) is not an arc in D(A). Then $k\geqslant 2$ and there exist i_1,\ldots,i_{k-1} such that $A(i,i_1)=\cdots=A(i_{k-1},j)=*$. Applying Lemma 1 k-1 times we deduce A(i,j)=*, a contradiction. Thus there is no walk from i to j in D(A). \square

Download English Version:

https://daneshyari.com/en/article/4599693

Download Persian Version:

https://daneshyari.com/article/4599693

<u>Daneshyari.com</u>