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1. Introduction

Let F be a field and F™*" the set of m x n matrices over F. Define a metric d on
men by

d(A, B) = rank(A — B).

Two matrices A, B € F™*™ are adjacent, denoted by A ~ B, if d(A, B) = rank(4 —
B) = 1. This metric and adjacency relation give rise to an interesting geometrical struc-
ture on F™*™,

In mid 1940s, Hua initiated the study of the fundamental theorem of the geometry of
matrices that concerns the characterization of maps ¢ : F™*" — F™X" leaving invariant
the adjacency relation, i.e., rank(¢(A) — ¢(B)) = 1 whenever rank(A — B) = 1. Hua
also considered the problem on matrices over a division ring, and his study generated
considerable interest and led to many interesting results; for example, see [8,9,11,13,18,
20].

Suppose F is the finite field F, with ¢ elements. Then the adjacency relation A ~ B
in F,”"*" defined above, i.e., A ~ B if rank(4 — B) = 1, gives rise to a graph G = (V, ~)
with V' = F,™"" as the vertex set and there is an edge joining A, B € V if and only
if A~ B. We call G = (F,"*",~) a matriz graph, which is also called a bilinear
forms graph in graph theory. This graph has a lot of interesting properties. For example,
it is easy to check that G is a regular graph with diameter equal to min{m,n}; it is
Eulerian if and only if ¢ is odd. We will give an easy constructive proof to show that G is
Hamiltonian. Furthermore, we determine the independence number, chromatic number
and clique number of GG; see Section 2.

Note that in graph theory literature, it is common to write G = (V, E) with V as the
vertex set, and E as the edge set consisting of all the unordered pairs of vertices u and
v that are adjacent.

Recall that for two given graphs G = (V,~) and G' = (V/,~'), amap ¢ : V — V' is
a graph homomorphism if

é(a) ~ ¢(b) in G whenever a~binG.

A graph homomorphism is called a graph endomorphism if G = G’. Thus, the fundamen-
tal theorem of geometry of F,™*" can be formulated in terms of graph endomorphisms
on (F," ~). In [16,17], the author characterized the graph endomorphisms on sym-
metric matrix graphs and hermitian matrix graphs over a finite field. In Section 3, we
will characterize graph endomorphisms on matrix graphs using results in Section 2.
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