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Let Fm×n be the set of m×n matrices over a field F. Consider
a graph G = (Fm×n,∼) with F

m×n as the vertex set such that
two vertices A,B ∈ F

m×n are adjacent if rank(A − B) = 1.
We study graph properties of G when F is a finite field.
In particular, G is a regular connected graph with diameter
equal to min{m,n}; it is always Hamiltonian. Furthermore, we
determine the independence number, chromatic number and
clique number of G. These results are used to characterize the
graph endomorphisms of G, which extends Hua’s fundamental
theorem of geometry on F

m×n.
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Independence number
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1. Introduction

Let F be a field and F
m×n the set of m × n matrices over F. Define a metric d on

F
m×n by

d(A,B) = rank(A−B).

Two matrices A,B ∈ F
m×n are adjacent, denoted by A ∼ B, if d(A,B) = rank(A −

B) = 1. This metric and adjacency relation give rise to an interesting geometrical struc-
ture on F

m×n.
In mid 1940s, Hua initiated the study of the fundamental theorem of the geometry of

matrices that concerns the characterization of maps φ : Fm×n → F
m×n leaving invariant

the adjacency relation, i.e., rank(φ(A) − φ(B)) = 1 whenever rank(A − B) = 1. Hua
also considered the problem on matrices over a division ring, and his study generated
considerable interest and led to many interesting results; for example, see [8,9,11,13,18,
20].

Suppose F is the finite field Fq with q elements. Then the adjacency relation A ∼ B

in Fq
m×n defined above, i.e., A ∼ B if rank(A−B) = 1, gives rise to a graph G = (V,∼)

with V = Fq
m×n as the vertex set and there is an edge joining A,B ∈ V if and only

if A ∼ B. We call G = (Fq
m×n,∼) a matrix graph, which is also called a bilinear

forms graph in graph theory. This graph has a lot of interesting properties. For example,
it is easy to check that G is a regular graph with diameter equal to min{m,n}; it is
Eulerian if and only if q is odd. We will give an easy constructive proof to show that G is
Hamiltonian. Furthermore, we determine the independence number, chromatic number
and clique number of G; see Section 2.

Note that in graph theory literature, it is common to write G = (V,E) with V as the
vertex set, and E as the edge set consisting of all the unordered pairs of vertices u and
v that are adjacent.

Recall that for two given graphs G = (V,∼) and G′ = (V ′,∼′), a map φ : V → V ′ is
a graph homomorphism if

φ(a) ∼′ φ(b) in G′ whenever a ∼ b in G.

A graph homomorphism is called a graph endomorphism if G = G′. Thus, the fundamen-
tal theorem of geometry of Fq

m×n can be formulated in terms of graph endomorphisms
on (Fq

m×n,∼). In [16,17], the author characterized the graph endomorphisms on sym-
metric matrix graphs and hermitian matrix graphs over a finite field. In Section 3, we
will characterize graph endomorphisms on matrix graphs using results in Section 2.
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