# Further refinements of the Heinz inequality 

Rupinderjit Kaur ${ }^{\text {a }}$, Mohammad Sal Moslehian ${ }^{\text {b,* }}$, Mandeep Singh ${ }^{\text {a }}$, Cristian Conde ${ }^{c}$<br>${ }^{\text {a }}$ Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India<br>${ }^{\mathrm{b}}$ Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran<br>${ }^{\text {c }}$ Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutierrez 1150, (B1613GSX) Los Polvorines and Instituto Argentino de Matemática "Alberto P. Calderón", Saavedra 153 piso, (C1083ACA) Buenos Aires, Argentina

## ARTICLEINFO

## Article history:

Received 3 September 2012
Accepted 8 January 2013
Available online 27 February 2013
Submitted by Hans Schneider
Dedicated in the memory of Professors Michael Neumann and Uriel Rothblum.

## AMS classification:

15A60
47A30
47A64
47B15

Keywords:
Heinz inequality
Convex function
Hermite-Hadamard inequality
Positive definite matrix
Unitarily invariant norm


#### Abstract

The celebrated Heinz inequality asserts that $2\left\|\mid A^{1 / 2} X B^{1 / 2}\right\| \| \leqslant$ $\left\|\mid A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\|\|\leqslant\| A X+X B \|$ for $X \in \mathbb{B}(\mathscr{H}), A, B \in$ $\mathbb{B}(\mathscr{H})_{+}$, every unitarily invariant norm $\|\|\cdot\|\|$ and $v \in[0,1]$. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function $F(v)=\| \| A^{v} X B^{1-v}+$ $A^{1-v} X B^{v}\| \|$, some integration techniques and various refinements of the Hermite-Hadamard inequality. In the setting of matrices we prove that


$$
\begin{aligned}
& \left\|A^{\frac{\alpha+\beta}{2}} X B^{1-\frac{\alpha+\beta}{2}}+A^{1-\frac{\alpha+\beta}{2}} X B^{\frac{\alpha+\beta}{2}}\right\| \| \\
& \left.\quad \leqslant \frac{1}{|\beta-\alpha|}\| \| \int_{\alpha}^{\beta}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \right\rvert\, \| \\
& \quad \leqslant \frac{1}{2}\left\|\mid A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}+A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta}\right\| \|
\end{aligned}
$$

for real numbers $\alpha, \beta$.
© 2013 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $\mathbb{B}(\mathscr{H})$ denote the $C^{*}$-algebra of all bounded linear operators acting on a complex separable Hilbert space $(\mathscr{H},\langle\cdot, \cdot\rangle)$. In the case when $\operatorname{dim} \mathscr{H}=n$, we identify $\mathbb{B}(\mathscr{H})$ with the full matrix algebra

[^0]$\mathcal{M}_{n}$ of all $n \times n$ matrices with entries in the complex field. The cone of positive operators is denoted by $\mathbb{B}(\mathscr{H})_{+}$. A unitarily invariant norm $\||\cdot|\| \mid$ is defined on a norm ideal $\mathfrak{J} \||\cdot|| |$ of $\mathbb{B}(\mathscr{H})$ associated with it and has the property $\|\|U X V\|\|=\|X X\|$, where $U$ and $V$ are unitaries and $X \in \mathfrak{J}_{\|}\|.\| . \|$. Whenever we write $\||X|\|$, we mean that $X \in \mathfrak{J}\||\cdot|\|$. The operator norm on $\mathbb{B}(\mathscr{H})$ is denoted by $\|\cdot\|$.

The arithmetic-geometric mean inequality for two positive real numbers $a, b$ is $\sqrt{a b} \leqslant(a+b) / 2$, which has been generalized in the context of bounded linear operators as follows. For $A, B \in \mathbb{B}(\mathscr{H})_{+}$ and an unitarily invariant norm ||| $\cdot|\mid$ it holds that

$$
2 \mid\left\|A^{1 / 2} X B^{1 / 2}\right\|\|\leqslant\| A X+X B\| \| .
$$

For $0 \leqslant v \leqslant 1$ and two nonnegative real numbers $a$ and $b$, the Heinz mean is defined as

$$
H_{v}(a, b)=\frac{a^{\nu} b^{1-v}+a^{1-v} b^{v}}{2}
$$

The function $H_{v}$ is symmetric about the point $v=\frac{1}{2}$. Note that $H_{0}(a, b)=H_{1}(a, b)=\frac{a+b}{2}$, $H_{1 / 2}(a, b)=\sqrt{a b}$ and

$$
\begin{equation*}
H_{1 / 2}(a, b) \leqslant H_{v}(a, b) \leqslant H_{0}(a, b) \tag{1.1}
\end{equation*}
$$

for $0 \leqslant v \leqslant 1$, i.e., the Heinz means interpolate between the geometric mean and the arithmetic mean. The generalization of (1.1) in $B(\mathscr{H})$ asserts that for operators $A, B, X$ such that $A, B \in \mathbb{B}(\mathscr{H})_{+}$, every unitarily invariant norm $\|\|\cdot\|\|$ and $v \in[0,1]$ the following double inequality due to Bhatia and Davis [3] holds

$$
\begin{equation*}
2\left\|\left\|A^{1 / 2} X B^{1 / 2}\right\|\right\| \leqslant\left\|A^{\nu} X B^{1-v}+A^{1-v} X B^{v}\right\|\|\leqslant\| A X+X B\| \| . \tag{1.2}
\end{equation*}
$$

Indeed, it has been proved that $F(v)=\| \| A^{\nu} X B^{1-v}+A^{1-v} X B^{v}\| \|$ is a convex function of $v$ on $[0,1]$ with symmetry about $v=1 / 2$, which attains its minimum there at and its maximum at $v=0$ and $v=1$.

The second part of the previous inequality is one of the most essential inequalities in the operator theory, which is called the Heinz inequality; see [10]. The proof given by Heinz [11] is based on the complex analysis and is somewhat complicated. In [18], McIntosh showed that the Heinz inequality is a consequence of the following inequality

$$
\left\|A^{*} A X+X B B^{*}\right\| \geqslant 2\|A X B\|,
$$

where $A, B, X \in \mathbb{B}(\mathscr{H})$. In the literature, the above inequality is called the arithmetic-geometric mean inequality. Fujii et al. [9] proved that the Heinz inequality is equivalent to several other norm inequalities such as the Corach-Porta-Recht inequality $\left\|A X A^{-1}+A^{-1} X A\right\| \geqslant 2\|X\|$, where $A$ is a selfadjoint invertible operator and $X$ is a selfadjoint operator; see also [6]. Audenaert [2] gave a singular value inequality for Heinz means by showing that if $A, B \in \mathcal{M}_{n}$ are positive semidefinite and $0 \leqslant v \leqslant 1$, then $s_{j}\left(A^{\nu} B^{1-\nu}+A^{1-v} B^{\nu}\right) \leqslant s_{j}(A+B)$ for $j=1, \ldots, n$, where $s_{j}$ denotes the $j$ th singular value. Also, Yamazaki [22] used the classical Heinz inequality $\|A X B\|^{r}\|X\|^{1-r} \geq\left\|A^{r} X B^{r}\right\|(A, B, X \in \mathbb{B}(\mathscr{H}), A \geqslant$ $0, B \geqslant 0, r \in[0,1])$ to characterize the chaotic order relation and to study isometric Aluthge transformations.

For a detailed study of these and associated norm inequalities along with their history of origin, refinements and applications, one may refer to [3-5,12-15].

It should be noticed that $F(1 / 2) \leqslant F(v) \leqslant \frac{F(0)+F(1)}{2}$ provides a refinement to the Jensen inequality $F(1 / 2) \leqslant \frac{F(0)+F(1)}{2}$ for the function $F$. Therefore it seems quite reasonable to obtain a new refinement of (1.2) by utilizing a refinement of Jensen's inequality. This idea was recently applied by Kittaneh [17] in virtue of the Hermite-Hadamard inequality (2.1).

One of the purposes of the present article is to obtain some new refinements of (1.2), from different refinements of inequality (2.1). We also aim to give a unified study and further refinements to the recent works for matrices.

# https://daneshyari.com/en/article/4599703 

Download Persian Version:

## https://daneshyari.com/article/4599703

## Daneshyari.com


[^0]:    * Corresponding author. Tel.: +98 9151140894; fax: +98 5118644594.

    E-mail addresses: rupinder_grewal_86@yahoo.co.in (R. Kaur), moslehian@um.ac.ir, moslehian@member.ams.org, moslehian@yahoo.com (M.S. Moslehian), msrawla@yahoo.com (M. Singh), cconde@ungs.edu.ar (C. Conde).

