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The celebrated Heinz inequality asserts that 2|||A1/2XB1/2||| �
|||AνXB1−ν + A1−νXBν ||| � |||AX + XB||| for X ∈ B(H ), A, B ∈
B(H )+, every unitarily invariant norm ||| · ||| and ν ∈ [0, 1]. In
this paper, we present several improvement of the Heinz inequal-

ity by using the convexity of the function F(ν) = |||AνXB1−ν +
A1−νXBν |||, some integration techniques and various refinements

of the Hermite–Hadamard inequality. In the setting of matrices we

prove that
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for real numbers α, β .
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1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators acting on a complex separable

Hilbert space (H , 〈·, ·〉). In the case when dimH = n, we identify B(H )with the full matrix algebra
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Mn of all n × n matrices with entries in the complex field. The cone of positive operators is denoted

by B(H )+. A unitarily invariant norm |||·||| is defined on a norm ideal J|||·||| of B(H ) associated with

it and has the property |||UXV ||| = |||X|||, where U and V are unitaries and X ∈ J|||.|||. Whenever we

write |||X|||, we mean that X ∈ J|||·|||. The operator norm on B(H ) is denoted by ‖ · ‖.
The arithmetic–geometric mean inequality for two positive real numbers a, b is

√
ab � (a+ b)/2,

which has been generalized in the context of bounded linear operators as follows. For A, B ∈ B(H )+
and an unitarily invariant norm ||| · ||| it holds that

2|||A1/2XB1/2||| � |||AX + XB|||.
For 0 � ν � 1 and two nonnegative real numbers a and b, the Heinz mean is defined as

Hν(a, b) = aνb1−ν + a1−νbν

2
.

The function Hν is symmetric about the point ν = 1
2
. Note that H0(a, b) = H1(a, b) = a+b

2
,

H1/2(a, b) = √
ab and

H1/2(a, b) � Hν(a, b) � H0(a, b) (1.1)

for 0 � ν � 1, i.e., the Heinz means interpolate between the geometric mean and the arithmetic

mean. The generalization of (1.1) in B(H ) asserts that for operators A, B, X such that A, B ∈ B(H )+,

every unitarily invariant norm ||| · ||| and ν ∈ [0, 1] the following double inequality due to Bhatia and

Davis [3] holds

2|||A1/2XB1/2||| � |||AνXB1−ν + A1−νXBν ||| � |||AX + XB|||. (1.2)

Indeed, it has been proved that F(ν) = |||AνXB1−ν + A1−νXBν ||| is a convex function of ν on [0, 1]
with symmetry about ν = 1/2, which attains its minimum there at and its maximum at ν = 0 and

ν = 1.

The second part of the previous inequality is one of the most essential inequalities in the operator

theory, which is called the Heinz inequality; see [10]. The proof given by Heinz [11] is based on the

complex analysis and is somewhat complicated. In [18], McIntosh showed that the Heinz inequality is

a consequence of the following inequality∥∥A∗AX + XBB∗∥∥ � 2 ‖AXB‖ ,

where A, B, X ∈ B(H ). In the literature, the above inequality is called the arithmetic–geometric mean

inequality. Fujii et al. [9] proved that the Heinz inequality is equivalent to several other norm inequal-

ities such as the Corach–Porta–Recht inequality ‖AXA−1 + A−1XA‖ � 2‖X‖, where A is a selfadjoint

invertible operator and X is a selfadjoint operator; see also [6]. Audenaert [2] gave a singular value

inequality for Heinz means by showing that if A, B ∈ Mn are positive semidefinite and 0 � ν � 1,

then sj(A
νB1−ν + A1−νBν) � sj(A+ B) for j = 1, . . . , n, where sj denotes the jth singular value. Also,

Yamazaki [22] used the classical Heinz inequality ‖AXB‖r‖X‖1−r ≥ ‖ArXBr‖ (A, B, X ∈ B(H ), A �
0, B � 0, r ∈ [0, 1]) to characterize the chaotic order relation and to study isometric Aluthge trans-

formations.

For a detailed study of these and associated norm inequalities along with their history of origin,

refinements and applications, one may refer to [3–5,12–15].

It should be noticed that F(1/2) � F(ν) � F(0)+F(1)
2

provides a refinement to the Jensen inequality

F(1/2) � F(0)+F(1)
2

for the function F . Therefore it seems quite reasonable to obtain a new refinement

of (1.2) by utilizing a refinement of Jensen’s inequality. This idea was recently applied by Kittaneh [17]

in virtue of the Hermite–Hadamard inequality (2.1).

One of the purposes of the present article is to obtain some new refinements of (1.2), from different

refinements of inequality (2.1). We also aim to give a unified study and further refinements to the

recent works for matrices.
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