

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Generalized inverses of Markovian kernels in terms of properties of the Markov chain

LINEAR

pplications

Jeffrey J. Hunter

School of Computing and Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand

ARTICLE INFO

Article history: Received 18 September 2012 Accepted 30 August 2013 Available online 20 September 2013 Submitted by R. Brualdi

Dedicated to the memory of Miki Neumann and Uri Rothblum

MSC: 15A09 15B51 60J10

Keywords: Markov chains Stochastic matrices Stationary distributions Moments of first passage times Generalized matrix inverses Group inverse Fundamental matrix Moore–Penrose generalized inverse

ABSTRACT

All one-condition generalized inverses of the Markovian kernel I - P, where P is the transition matrix of a finite irreducible Markov chain, can be uniquely specified in terms of the stationary probabilities and the mean first passage times of the underlying Markov chain. Special sub-families include the group inverse of I - P, Kemeny and Snell's fundamental matrix of the Markov chain and the Moore–Penrose g-inverse. The elements of some sub-families of the generalized inverses can also be re-expressed involving the second moments of the recurrence time variables. Some applications to Kemeny's constant and perturbations of Markov chains are also considered.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let $P = [p_{ij}]$ be the transition matrix of a finite irreducible, discrete time Markov chain $\{X_n\}$ $(n \ge 0)$, with state space $S = \{1, 2, ..., m\}$. Such chains have a unique stationary distribution $\{\pi_j\}$ $(1 \le j \le m)$. Let $T_{ij} = \min[n \ge 1, X_n = j \mid X_0 = i]$ be the first passage time from state *i* to state *j* (first return when i = j) and define $m_{ij} = E[T_{ij} \mid X_0 = i]$ as the mean first passage time from state *i*

0024-3795/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.08.037

E-mail address: jeffrey.hunter@aut.ac.nz.

39

to state *j* (or mean recurrence time of state *i* when i = j). It is well known that for finite irreducible chains all the m_{ij} are well defined and finite.

Generalized matrix inverses (g-inverses) of I - P are typically used to solve systems of linear equations including a variety of the properties of the Markov chain. In particular the $\{\pi_j\}$ and the $\{m_{ij}\}$ can be found in terms of g-inverses, either in matrix form or in terms of the elements of the g-inverse. What is not known is that the elements of every g-inverse of I - P can be expressed in terms of the stationary probabilities $\{\pi_j\}$ and the mean first passage times $\{m_{ij}\}$ of the associated Markov chain. The key thrust to this paper is to first identify the parameters that characterize different sub-families of g-inverses of I - P. Then to assign to each sub-family, thus characterized, explicit expressions for the elements of the g-inverses in terms of the $\{\pi_i\}$ and the $\{m_{ij}\}$.

2. Generalized inverses of the Markovian kernel I - P

A g-inverse of a matrix A is any matrix A^- such that $AA^-A = A$. Matrices A^- are called "one-condition" g-inverses or "equation solving" g-inverses because of their use in solving systems of linear equations.

If A is non-singular then A^- is A^{-1} , the inverse of A, and is unique. If A is singular, A^- is not unique. Typically, in the equations that we wish to solve, we only need a one-condition g-inverse with the non-uniqueness being eliminated by the imposition of boundary conditions (such as $\sum_{i=1}^{m} \pi_i = 1$ in the case of finding stationary distributions, and $m_{ii} = 1/\pi_i$ in the case of mean first passage times).

The following theorem in [5] gives a procedure for finding all one-condition g-inverses of I - P.

Theorem 1. Let *P* be the transition matrix of a finite irreducible Markov chain with m states and stationary probability vector $\boldsymbol{\pi}^{T} = (\pi_1, \pi_2, \dots, \pi_m)$.

Let $\mathbf{e}^T = (1, 1, \dots, 1)$ and \mathbf{t} and \mathbf{u} be any vectors.

- (a) $I P + t \mathbf{u}^T$ is non-singular if and only if $\pi^T \mathbf{t} \neq 0$ and $\mathbf{u}^T \mathbf{e} \neq 0$.
- (b) If $\pi^T \mathbf{t} \neq 0$ and $\mathbf{u}^T \mathbf{e} \neq 0$ then $[I P + \mathbf{t}\mathbf{u}^T]^{-1}$ is a one-condition g-inverse of I P and, further, all "one-condition" g-inverses of I P can be expressed as $A^{(1)} = [I P + \mathbf{t}\mathbf{u}^T]^{-1} + \mathbf{e}\mathbf{f}^T + \mathbf{g}\pi^T$ for arbitrary vectors \mathbf{f} and \mathbf{g} .

Useful by-products of the proof of the above theorem were the following results:

$$\left[I - P + \mathbf{t}\mathbf{u}^{T}\right]^{-1}\mathbf{t} = \frac{\mathbf{e}}{\mathbf{u}^{T}\mathbf{e}}.$$
(2.1)

$$\boldsymbol{u}^{T} \left[\boldsymbol{I} - \boldsymbol{P} + \boldsymbol{t} \boldsymbol{u}^{T} \right]^{-1} = \frac{\boldsymbol{\pi}^{T}}{\boldsymbol{\pi}^{T} \boldsymbol{t}}.$$
(2.2)

Special multi-condition g-inverses of A can also be considered by imposing additional conditions. Consider real conformable matrices X (which in our context we assume to be square) such that:

(Condition 1) AXA = A. (Condition 2) XAX = X. (Condition 3) $(AX)^T = AX$. (Condition 4) $(XA)^T = XA$. (Condition 5) AX = XA.

Let $A^{(i,j,\ldots,l)}$ be any matrix that satisfies conditions $(i), (j), \ldots, (l)$ of the above itemised conditions. $A^{(i,j,\ldots,l)}$ is called an (i, j, \ldots, l) g-inverse of A, under the assumption that condition 1 is always included. Let $A\{i, j, \ldots, l\}$ be the class of all (i, j, \ldots, l) g-inverses of A.

The classification of g-inverses of the Markovian kernel I - P, can be done simply by means of the following results given in [8].

Theorem 2. If G is any g-inverse of I - P, where P is the transition matrix of a finite irreducible Markov chain with stationary probability vector π^T , then G can be uniquely expressed in parametric form as

Download English Version:

https://daneshyari.com/en/article/4599704

Download Persian Version:

https://daneshyari.com/article/4599704

Daneshyari.com