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All one-condition generalized inverses of the Markovian kernel
I − P , where P is the transition matrix of a finite irreducible
Markov chain, can be uniquely specified in terms of the stationary
probabilities and the mean first passage times of the underlying
Markov chain. Special sub-families include the group inverse of
I − P , Kemeny and Snell’s fundamental matrix of the Markov
chain and the Moore–Penrose g-inverse. The elements of some
sub-families of the generalized inverses can also be re-expressed
involving the second moments of the recurrence time variables.
Some applications to Kemeny’s constant and perturbations of
Markov chains are also considered.
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1. Introduction

Let P = [pij] be the transition matrix of a finite irreducible, discrete time Markov chain {Xn}
(n � 0), with state space S = {1,2, . . . ,m}. Such chains have a unique stationary distribution {π j}
(1 � j � m). Let Tij = min[n � 1, Xn = j | X0 = i] be the first passage time from state i to state j
(first return when i = j) and define mij = E[Tij | X0 = i] as the mean first passage time from state i
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to state j (or mean recurrence time of state i when i = j). It is well known that for finite irreducible
chains all the mij are well defined and finite.

Generalized matrix inverses (g-inverses) of I − P are typically used to solve systems of linear
equations including a variety of the properties of the Markov chain. In particular the {π j} and the
{mij} can be found in terms of g-inverses, either in matrix form or in terms of the elements of the
g-inverse. What is not known is that the elements of every g-inverse of I − P can be expressed
in terms of the stationary probabilities {π j} and the mean first passage times {mij} of the associated
Markov chain. The key thrust to this paper is to first identify the parameters that characterize different
sub-families of g-inverses of I − P . Then to assign to each sub-family, thus characterized, explicit
expressions for the elements of the g-inverses in terms of the {π j} and the {mij}.

2. Generalized inverses of the Markovian kernel I − P

A g-inverse of a matrix A is any matrix A− such that A A− A = A. Matrices A− are called “one-
condition” g-inverses or “equation solving” g-inverses because of their use in solving systems of linear
equations.

If A is non-singular then A− is A−1, the inverse of A, and is unique. If A is singular, A− is not
unique. Typically, in the equations that we wish to solve, we only need a one-condition g-inverse with
the non-uniqueness being eliminated by the imposition of boundary conditions (such as

∑m
i=1 πi = 1

in the case of finding stationary distributions, and mii = 1/πi in the case of mean first passage times).
The following theorem in [5] gives a procedure for finding all one-condition g-inverses of I − P .

Theorem 1. Let P be the transition matrix of a finite irreducible Markov chain with m states and stationary
probability vector π T = (π1,π2, . . . ,πm).

Let eT = (1,1, . . . ,1) and t and u be any vectors.

(a) I − P + tuT is non-singular if and only if π T t �= 0 and uT e �= 0.
(b) If π T t �= 0 and uT e �= 0 then [I − P + tuT ]−1 is a one-condition g-inverse of I − P and, further, all

“one-condition” g-inverses of I − P can be expressed as A(1) = [I − P +tuT ]−1 +e f T + gπ T for arbitrary
vectors f and g .

Useful by-products of the proof of the above theorem were the following results:[
I − P + tuT ]−1

t = e

uT e
. (2.1)

uT [
I − P + tuT ]−1 = π T

π T t
. (2.2)

Special multi-condition g-inverses of A can also be considered by imposing additional conditions.
Consider real conformable matrices X (which in our context we assume to be square) such that:

(Condition 1) A X A = A.
(Condition 2) X A X = X .
(Condition 3) (A X)T = A X .
(Condition 4) (X A)T = X A.
(Condition 5) A X = X A.

Let A(i, j,...,l) be any matrix that satisfies conditions (i), ( j), . . . , (l) of the above itemised conditions.
A(i, j,...,l) is called an (i, j, . . . , l) g-inverse of A, under the assumption that condition 1 is always
included. Let A{i, j, . . . , l} be the class of all (i, j, . . . , l) g-inverses of A.

The classification of g-inverses of the Markovian kernel I − P , can be done simply by means of the
following results given in [8].

Theorem 2. If G is any g-inverse of I − P , where P is the transition matrix of a finite irreducible Markov chain
with stationary probability vector π T , then G can be uniquely expressed in parametric form as
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