Convex integer optimization by constantly many linear counterparts

Michal Melamed, Shmuel Onn*
Faculty of IE®M, Technion - Israel Institute of Technology, 32000 Haifa, Israel

A R T I C L E I N F O

Article history:

Received 8 November 2012
Accepted 7 January 2014
Available online 23 January 2014
Submitted by R. Brualdi
Dedicated to the memory of Uri
Rothblum

MSC:

52B
52C
62H
68Q
68R
90B
90C

Keywords:
Combinatorial optimization
Matroid
Projection
Integer programming
Transportation problem
Statistical table

Abstract

In this article we study convex integer maximization problems with composite objective functions of the form $f(W x)$, where f is a convex function on \mathbb{R}^{d} and W is a $d \times n$ matrix with small or binary entries, over finite sets $S \subset \mathbb{Z}^{n}$ of integer points presented by an oracle or by linear inequalities. Continuing the line of research advanced by Uri Rothblum and his colleagues on edge-directions, we introduce here the notion of edge complexity of S, and use it to establish polynomial and constant upper bounds on the number of vertices of the projection $\operatorname{conv}(W S)$ and on the number of linear optimization counterparts needed to solve the above convex problem. Two typical consequences are the following. First, for any d, there is a constant $m(d)$ such that the maximum number of vertices of the projection of any matroid $S \subset\{0,1\}^{n}$ by any binary $d \times n$ matrix W is $m(d)$ regardless of n and S; and the convex matroid problem reduces to $m(d)$ greedily solvable linear counterparts. In particular, $m(2)=8$. Second, for any d, l, m, there is a constant $t(d ; l, m)$ such that the maximum number of vertices of the projection of any three-index $l \times m \times n$ transportation polytope for any n by any binary $d \times(l \times m \times n)$ matrix W is $t(d ; l, m)$; and the convex three-index transportation problem reduces to $t(d ; l, m)$ linear counterparts solvable in polynomial time.

© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

In this article we study convex integer maximization problems and the closely related projections of the sets of feasible points. Let $S \subset \mathbb{Z}^{n}$ be a finite set of integer points, let $\operatorname{conv}(S) \subset \mathbb{R}^{n}$ be its convex hull, let W be a $d \times n$ integer matrix, and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function. We study the problem of maximizing the composite function $f(W x)$ over S and the projection of $\operatorname{conv}(S)$ by W into \mathbb{R}^{d}, namely,

$$
\begin{equation*}
\max \{f(W x): x \in S\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{conv}(W S)=\operatorname{conv}\{W x: x \in S\}=\{W x: x \in \operatorname{conv}(S)\} \subset \mathbb{R}^{d} \tag{2}
\end{equation*}
$$

The sets S we consider arise in two natural contexts. First, in combinatorial optimization, in which case $S \subseteq\{0,1\}^{n}$ has some combinatorial structure and might be presented by a suitable oracle. Second, in integer programming, where

$$
\begin{equation*}
S:=\left\{x \in \mathbb{Z}^{n}, A x=b, l \leqslant x \leqslant u\right\} \tag{3}
\end{equation*}
$$

is the set of integer points satisfying a given (standard) system of linear inequalities.
The optimization problem (1) can also be interpreted as a problem of multicriteria optimization, where each row of W gives a linear criterion $W_{i} x$ and f compromises these criteria. We therefore call W the criteria matrix or weight matrix.

The projection polytope $\operatorname{conv}(W S)$ in (2) and its vertices play a central role in solving problem (1): for any convex function f there is an optimal solution x whose projection $y:=W x$ is a vertex of $\operatorname{conv}(W S)$. In particular, the enumeration of all vertices of $\operatorname{conv}(W S)$ enables to compute the optimal objective value for any given convex function f by picking that vertex attaining the best value $f(y)=f(W x)$. So it suffices, and will be assumed throughout, that f is presented by a comparison oracle that, queried on vectors $y, z \in \mathbb{R}^{d}$, asserts whether or not $f(y)<f(z)$.

This line of research was advanced by Uri Rothblum, to whom we dedicate this article, and his colleagues, in several papers including [2,5,13], and culminated in the edge-direction framework of [16], see also [15, Chapter 2]. In this article we continue this line of investigation, and take a closer look on coarse criteria matrices; that is, we assume that the entries of W are small, presented in unary, or even bounded by a constant and lie in $\{0,1, \ldots, p\}$. In multicriteria combinatorial optimization, this corresponds to the weight $W_{i, j}$ attributed to element j of the ground set $\{1, \ldots, n\}$ under criterion i being a small or even $\{0,1\}$ value for all i, j.

Here is a typical result we obtain in convex combinatorial optimization, where $S \subset$ $\{0,1\}^{n}$ is the set of indicating vectors of bases of a matroid over $\{1, \ldots, n\}$.

https://daneshyari.com/en/article/4599708

Download Persian Version:

https://daneshyari.com/article/4599708

Daneshyari.com

[^0]: * Corresponding author. Tel.: +97248294416.

 E-mail addresses: michalro@tx.technion.ac.il (M. Melamed), onn@ie.technion.ac.il (S. Onn).

