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In this article we study convex integer maximization problems
with composite objective functions of the form f(Wx), where
f is a convex function on R

d and W is a d × n matrix with
small or binary entries, over finite sets S ⊂ Z

n of integer
points presented by an oracle or by linear inequalities.
Continuing the line of research advanced by Uri Rothblum and
his colleagues on edge-directions, we introduce here the notion
of edge complexity of S, and use it to establish polynomial and
constant upper bounds on the number of vertices of the pro-
jection conv(WS) and on the number of linear optimization
counterparts needed to solve the above convex problem.
Two typical consequences are the following. First, for any d,
there is a constant m(d) such that the maximum number of
vertices of the projection of any matroid S ⊂ {0, 1}n by any
binary d × n matrix W is m(d) regardless of n and S; and
the convex matroid problem reduces to m(d) greedily solvable
linear counterparts. In particular, m(2) = 8. Second, for any
d, l,m, there is a constant t(d; l,m) such that the maximum
number of vertices of the projection of any three-index l×m×n
transportation polytope for any n by any binary d×(l×m×n)
matrix W is t(d; l,m); and the convex three-index transporta-
tion problem reduces to t(d; l,m) linear counterparts solvable
in polynomial time.
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1. Introduction

In this article we study convex integer maximization problems and the closely related
projections of the sets of feasible points. Let S ⊂ Z

n be a finite set of integer points, let
conv(S) ⊂ R

n be its convex hull, let W be a d×n integer matrix, and let f : Rd → R be
a convex function. We study the problem of maximizing the composite function f(Wx)
over S and the projection of conv(S) by W into R

d, namely,

max
{
f(Wx): x ∈ S

}
(1)

and

conv(WS) = conv{Wx: x ∈ S} =
{
Wx: x ∈ conv(S)

}
⊂ R

d. (2)

The sets S we consider arise in two natural contexts. First, in combinatorial optimiza-
tion, in which case S ⊆ {0, 1}n has some combinatorial structure and might be presented
by a suitable oracle. Second, in integer programming, where

S :=
{
x ∈ Z

n, Ax = b, l � x � u
}

(3)

is the set of integer points satisfying a given (standard) system of linear inequalities.
The optimization problem (1) can also be interpreted as a problem of multicriteria

optimization, where each row of W gives a linear criterion Wix and f compromises these
criteria. We therefore call W the criteria matrix or weight matrix.

The projection polytope conv(WS) in (2) and its vertices play a central role in solving
problem (1): for any convex function f there is an optimal solution x whose projection
y := Wx is a vertex of conv(WS). In particular, the enumeration of all vertices of
conv(WS) enables to compute the optimal objective value for any given convex function
f by picking that vertex attaining the best value f(y) = f(Wx). So it suffices, and will
be assumed throughout, that f is presented by a comparison oracle that, queried on
vectors y, z ∈ R

d, asserts whether or not f(y) < f(z).
This line of research was advanced by Uri Rothblum, to whom we dedicate this ar-

ticle, and his colleagues, in several papers including [2,5,13], and culminated in the
edge-direction framework of [16], see also [15, Chapter 2]. In this article we continue this
line of investigation, and take a closer look on coarse criteria matrices; that is, we assume
that the entries of W are small, presented in unary, or even bounded by a constant and
lie in {0, 1, . . . , p}. In multicriteria combinatorial optimization, this corresponds to the
weight Wi,j attributed to element j of the ground set {1, . . . , n} under criterion i being
a small or even {0, 1} value for all i, j.

Here is a typical result we obtain in convex combinatorial optimization, where S ⊂
{0, 1}n is the set of indicating vectors of bases of a matroid over {1, . . . , n}.
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