

Eigenvalue multiplicity in cubic graphs

Peter Rowlinson [∗]

Mathematics and Statistics Group, Institute of Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA, United Kingdom

article info abstract

Article history: Received 31 August 2013 Accepted 25 November 2013 Available online 13 December 2013 Submitted by R. Brualdi

MSC: 05C50

Keywords: Cubic graph Eigenvalue Star complement

Let *G* be a connected cubic graph of order *n* with μ as an eigenvalue of multiplicity *k*. We show that (i) if $\mu \notin \{-1, 0\}$ then $k \leq \frac{1}{2}n$, with equality if and only if $\mu = 1$ and *G* is the Petersen graph; (ii) if $\mu = -1$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = K_4$; (iii) if $\mu = 0$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = 2K_3$. © 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a regular graph of order *n* with μ as an eigenvalue of multiplicity *k*, and let $t = n - k$. Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a $(0, 1)$ -adjacency matrix *A* of *G* has dimension *k* and codimension *t*. From [\[1, Theorem 3.1\],](#page--1-0) we know that if $\mu \notin \{-1, 0\}$ and $t > 2$ then $k \leq n - \frac{1}{2}(-1 +$ $\sqrt{8n+9}$), equivalently $k \leq \frac{1}{2}(t+1)(t-2)$. For cubic graphs, this quadratic bound improves an earlier cubic bound noted in [\[4, p. 162\].](#page--1-0) In fact, when $\mu \neq 0$ and *G* is connected, a linear bound follows easily from the equation tr(*A*) = 0. To see this, note first that if $k \geq \frac{1}{2}n$ then μ is an integer, for otherwise it has an algebraic conjugate which is a second eigenvalue of multiplicity $\frac{1}{2}n$. It follows that if *G* is a connected cubic graph then $\mu \in \{-2, -1, 0, 1, 2\}$ (see [\[3, Sections 1.3 and 3.2\]\)](#page--1-0). If $k = n - 1$ then *G* is complete, $n = 4$ and $\mu = -1$; otherwise let *d* be the mean of the eigenvalues other than 3 and μ , so that $3 + k\mu + (n - k - 1)d = 0$. We have $-3 \le d < 3$; moreover, if $d = -3$ then G is bipartite, $k = n - 2$ and $\mu = 0$ (see [\[3, Theorems 3.2.3 and 3.2.4\]\)](#page--1-0). We deduce:

LINEAR AI GERRA and Its
Applications

^{*} Tel.: +44 1786 467468; fax: +44 1786 464551. *E-mail address:* p.rowlinson@stirling.ac.uk.

^{0024-3795/\$ –} see front matter © 2013 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.laa.2013.11.036>

- (a) if $\mu = -2$ then $k < \frac{3}{5}n$, i.e. $k < \frac{3}{2}t$;
- (b) if $\mu = -1$ then $k \leq \frac{3}{4}n$, i.e. $k \leq 3t$;
- (c) if $\mu = 0$ then $k \leq n 2$;
- (d) if $\mu = 1$ then $k < \frac{3}{4}n \frac{3}{2}$, i.e. $k < 3t 6$;
- (e) if $\mu = 2$ then $k < \frac{3}{5}n \frac{6}{5}$, i.e. $k < \frac{3}{2}t 3$.

We use star complements to improve these bounds, and to determine all the graphs for which the new bounds are attained. Our main result is the following; here and throughout we use the notation of the monograph [\[3\].](#page--1-0)

Theorem 1.1. *Let G be a connected cubic graph of order n with μ as an eigenvalue of multiplicity k.*

(i) If $\mu \notin \{-1, 0\}$ then $k \leq \frac{1}{2}n$, with equality if and only if $\mu = 1$ and G is the Petersen graph. (ii) If $\mu = -1$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = K_4$. (iii) If $\mu = 0$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = \overline{2K_3}$.

It follows that if *G* is a connected cubic graph of order $n > 10$ with μ as an eigenvalue of multiplicity *k* then $k \leq \frac{1}{2}n - 1$ when $\mu \notin \{-1, 0\}$, and $k \leq \frac{1}{2}n$ otherwise.

2. Preliminaries

Let *G* be a graph of order *n* with μ as an eigenvalue of multiplicity *k*. A *star set* for μ in *G* is a subset *X* of the vertex-set $V(G)$ such that $|X| = k$ and the induced subgraph $G - X$ does not have μ as an eigenvalue. In this situation, $G - X$ is called a *star complement* for μ in G. The fundamental properties of star sets and star complements are established in [\[3, Chapter 5\].](#page--1-0) We shall require the following results, where for any $X \subseteq V(G)$, we write G_X for the subgraph of G induced by X. We take $V(G) = \{1, \ldots, n\}$, and write $u \sim v$ to mean that vertices *u* and *v* are adjacent.

Theorem 2.1. *(See [3, [Theorem 5.1.7\].](#page--1-0)) Let X be a set of k vertices in G and suppose that G has adjacency* $\text{matrix} \left(\frac{A_X}{B} \frac{B^{\top}}{C} \right)$, where A_X is the adjacency matrix of G_X .

(i) *Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and*

$$
\mu I - A_X = B^{\top} (\mu I - C)^{-1} B. \tag{1}
$$

(ii) If X is a star set for μ then $\mathcal{E}(\mu)$ consists of the vectors $\binom{\mathbf{x}}{(\mu I - C)^{-1} B \mathbf{x}} (\mathbf{x} \in \mathbb{R}^k)$.

Let $H = G - X$, where *X* is a star set for μ . The columns \mathbf{b}_u ($u \in X$) of *B* are the characteristic *vectors of the H*-neighbourhoods Δ *H*(*u*) = {*v* ∈ *V*(*H*): *u* ∼ *v*} (*u* ∈ *X*). Eq. (1) shows that

$$
\mathbf{b}_u^{\top}(\mu I - C)^{-1}\mathbf{b}_v = \begin{cases} \mu & \text{if } u = v, \\ -1 & \text{if } u \sim v, \\ 0 & \text{otherwise,} \end{cases}
$$

and we deduce from Theorem 2.1:

Lemma 2.2. If X is a star set for μ , and $\mu \notin \{-1, 0\}$, then the neighbourhoods $\Delta_H(u)$ ($u \in X$) are non-empty *and distinct.*

Let *P* be the matrix of the orthogonal projection of \mathbb{R}^n onto $\mathcal{E}(\mu)$ with respect to the standard orthonormal basis { e_1, e_2, \ldots, e_n } of \mathbb{R}^n . Since *P* is a polynomial in *A* [\[3, Eq. 1.5\]](#page--1-0) we have $\mu P e_i =$ $AP**e**_i = PA**e**_i$ ($i = 1, ..., n$), whence:

Lemma 2.3.
$$
\mu P \mathbf{e}_i = \sum_{j \sim i} P \mathbf{e}_j \ (i = 1, ..., n).
$$

Download English Version:

<https://daneshyari.com/en/article/4599730>

Download Persian Version:

<https://daneshyari.com/article/4599730>

[Daneshyari.com](https://daneshyari.com)