

Eigenvalue multiplicity in cubic graphs

Peter Rowlinson*

Mathematics and Statistics Group, Institute of Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA, United Kingdom

ARTICLE INFO

Article history: Received 31 August 2013 Accepted 25 November 2013 Available online 13 December 2013 Submitted by R. Brualdi

MSC: 05C50

Keywords: Cubic graph Eigenvalue Star complement

ABSTRACT

Let *G* be a connected cubic graph of order *n* with μ as an eigenvalue of multiplicity *k*. We show that (i) if $\mu \notin \{-1, 0\}$ then $k \leq \frac{1}{2}n$, with equality if and only if $\mu = 1$ and *G* is the Petersen graph; (ii) if $\mu = -1$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = K_4$; (iii) if $\mu = 0$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = \overline{2K_3}$. © 2013 Elsevier Inc. All rights reserved.

CrossMark

1. Introduction

Let *G* be a regular graph of order *n* with μ as an eigenvalue of multiplicity *k*, and let t = n - k. Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0, 1)-adjacency matrix *A* of *G* has dimension *k* and codimension *t*. From [1, Theorem 3.1], we know that if $\mu \notin \{-1, 0\}$ and t > 2 then $k \leq n - \frac{1}{2}(-1 + \sqrt{8n+9})$, equivalently $k \leq \frac{1}{2}(t+1)(t-2)$. For cubic graphs, this quadratic bound improves an earlier cubic bound noted in [4, p. 162]. In fact, when $\mu \neq 0$ and *G* is connected, a linear bound follows easily from the equation tr(*A*) = 0. To see this, note first that if $k \geq \frac{1}{2}n$ then μ is an integer, for otherwise it has an algebraic conjugate which is a second eigenvalue of multiplicity $\frac{1}{2}n$. It follows that if *G* is a connected cubic graph then $\mu \in \{-2, -1, 0, 1, 2\}$ (see [3, Sections 1.3 and 3.2]). If k = n - 1 then *G* is complete, n = 4 and $\mu = -1$; otherwise let *d* be the mean of the eigenvalues other than 3 and μ , so that $3 + k\mu + (n - k - 1)d = 0$. We have $-3 \leq d < 3$; moreover, if d = -3 then *G* is bipartite, k = n - 2 and $\mu = 0$ (see [3, Theorems 3.2.3 and 3.2.4]). We deduce:

^{*} Tel.: +44 1786 467468; fax: +44 1786 464551. E-mail address: p.rowlinson@stirling.ac.uk.

^{0024-3795/\$ –} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.11.036

- (a) if $\mu = -2$ then $k < \frac{3}{5}n$, i.e. $k < \frac{3}{2}t$;
- (b) if $\mu = -1$ then $k \leq \frac{3}{4}n$, i.e. $k \leq 3t$;
- (c) if $\mu = 0$ then $k \leq n 2$;
- (d) if $\mu = 1$ then $k < \frac{3}{4}n \frac{3}{2}$, i.e. k < 3t 6;
- (e) if $\mu = 2$ then $k < \frac{3}{5}n \frac{6}{5}$, i.e. $k < \frac{3}{2}t 3$.

We use star complements to improve these bounds, and to determine all the graphs for which the new bounds are attained. Our main result is the following; here and throughout we use the notation of the monograph [3].

Theorem 1.1. Let G be a connected cubic graph of order n with μ as an eigenvalue of multiplicity k.

(i) If $\mu \notin \{-1, 0\}$ then $k \leq \frac{1}{2}n$, with equality if and only if $\mu = 1$ and *G* is the Petersen graph. (ii) If $\mu = -1$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = K_4$. (iii) If $\mu = 0$ then $k \leq \frac{1}{2}n + 1$, with equality if and only if $G = \overline{2K_3}$.

It follows that if *G* is a connected cubic graph of order n > 10 with μ as an eigenvalue of multiplicity *k* then $k \leq \frac{1}{2}n - 1$ when $\mu \notin \{-1, 0\}$, and $k \leq \frac{1}{2}n$ otherwise.

2. Preliminaries

Let *G* be a graph of order *n* with μ as an eigenvalue of multiplicity *k*. A star set for μ in *G* is a subset *X* of the vertex-set V(G) such that |X| = k and the induced subgraph G - X does not have μ as an eigenvalue. In this situation, G - X is called a *star complement* for μ in *G*. The fundamental properties of star sets and star complements are established in [3, Chapter 5]. We shall require the following results, where for any $X \subseteq V(G)$, we write G_X for the subgraph of *G* induced by *X*. We take $V(G) = \{1, ..., n\}$, and write $u \sim v$ to mean that vertices *u* and *v* are adjacent.

Theorem 2.1. (See [3, Theorem 5.1.7].) Let X be a set of k vertices in G and suppose that G has adjacency matrix $\begin{pmatrix} A_X & B^T \\ B & C \end{pmatrix}$, where A_X is the adjacency matrix of G_X .

(i) Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$\mu I - A_X = B^{\top} (\mu I - C)^{-1} B.$$
⁽¹⁾

(ii) If X is a star set for μ then $\mathcal{E}(\mu)$ consists of the vectors $\begin{pmatrix} \mathbf{x} \\ (\mu I - C)^{-1} B \mathbf{x} \end{pmatrix}$ ($\mathbf{x} \in \mathbb{R}^k$).

Let H = G - X, where X is a star set for μ . The columns \mathbf{b}_u ($u \in X$) of B are the characteristic vectors of the H-neighbourhoods $\Delta_H(u) = \{v \in V(H): u \sim v\}$ ($u \in X$). Eq. (1) shows that

$$\mathbf{b}_{u}^{\top}(\mu I - C)^{-1}\mathbf{b}_{v} = \begin{cases} \mu & \text{if } u = v, \\ -1 & \text{if } u \sim v, \\ 0 & \text{otherwise} \end{cases}$$

and we deduce from Theorem 2.1:

Lemma 2.2. If X is a star set for μ , and $\mu \notin \{-1, 0\}$, then the neighbourhoods $\Delta_H(u) \ (u \in X)$ are non-empty and distinct.

Let *P* be the matrix of the orthogonal projection of \mathbb{R}^n onto $\mathcal{E}(\mu)$ with respect to the standard orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ of \mathbb{R}^n . Since *P* is a polynomial in *A* [3, Eq. 1.5] we have $\mu P \mathbf{e}_i = AP \mathbf{e}_i = PA \mathbf{e}_i$ ($i = 1, \dots, n$), whence:

Lemma 2.3.
$$\mu P \mathbf{e}_i = \sum_{j \sim i} P \mathbf{e}_j \ (i = 1, ..., n).$$

Download English Version:

https://daneshyari.com/en/article/4599730

Download Persian Version:

https://daneshyari.com/article/4599730

Daneshyari.com