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In this paper, we show that the eigenvalues of certain classes
of Cayley graphs are integers. The (n,k,r)-arrangement graph
A(n, k,r) is a graph with all the k-permutations of an n-element set
as vertices where two k-permutations are adjacent if they differ in
exactly r positions. We establish a relation between the eigenvalues

MSC:

05C50
20C10
05A05

Keywords:
Arrangement graph
Cayley graph
Symmetric group
Spectrum integrality

of the arrangement graphs and the eigenvalues of certain Cayley
graphs. As a result, the conjecture on integrality of eigenvalues of
A(n, k, 1) follows.
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1. Introduction

Let I be a simple graph with vertex set v. The adjacency matrix of I" is a v x v matrix where
its rows and columns indexed by the vertex set of I and its (u, v)-entry is 1 if the vertices u and
v are adjacent and O otherwise. By eigenvalues of I' we mean the eigenvalues of its adjacency ma-
trix. A graph is said to be integral if all its eigenvalues are integers. All graphs considered are finite
(multi-)graphs without self-loops.
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1.1. Cayley graphs

Let G be a finite group and S be an inverse closed subset of G. The Cayley graph I' (G, S) is the
graph which has the elements of G as its vertices and two vertices u, v € G are joined by an edge if
and only if v =su for some s € S.

A Cayley graph I'(G, S) is said to be normal if S is closed under conjugation. It is well known
that the eigenvalues of a normal Cayley graph I'(G, S) can be expressed in terms of the irreducible
characters of G.

Theorem 1.1. (See [2,12,18,19].) The eigenvalues of a normal Cayley graph I" (G, S) are given by

1
Nx —WZX(S),

seS

where x ranges over all the irreducible characters of G. Moreover, the multiplicity of ny is x (1)2.

Let S, be the symmetric group on [n]={1,...,n} and S C S, be closed under conjugation. Since
central characters are algebraic integers [16, Theorem 3.7 on p. 36] and that the characters of the
symmetric group are integers ([16, 2.12 on p. 31| or [21, Corollary 2 on p. 103]), by Theorem 1.1, the
eigenvalues of I'(S;, S) are integers.

Corollary 1.2. The eigenvalues of a normal Cayley graph I" (S, S) are integers.

In general, if S is not closed under conjugation, then the eigenvalues of I'(S,,S) may not be
integers [13] (see also [1,17,20] for related results on the eigenvalues of certain Cayley graphs).

Problem 1.3. Find conditions on S, so that the eigenvalues of I'(S,, S) are integers.

Let 2 <r < n and Cy(r) be the set of all r cycles in S; which do not fix 1, i.e.

Cy(r) ={o € Sy | (1) # 1 and « is an r-cycle}.

For instance, Cy(2) = {(1 2), (1 3),..., (1 n)}. It was conjectured by Abdollahi and Vatandoost [1] that
the eigenvalues of I'(S,, Cy(2)) are integers, and contain all integers in the range from —(n — 1) to
n — 1 (with the sole exception that when n =2 or 3, zero is not an eigenvalue of I' (S, Cy(2))). The
second part of the conjecture was proved by Krakovski and Mohar [17]. In fact, they showed that for
n > 2 and each integer 1 <I<n—1, £(n—1) are eigenvalues of I'(S,, Cy(2)) with multiplicity at least
(rl':]z) Furthermore, if n > 4, then 0 is an eigenvalue of I"(S,, Cy(2)) with multiplicity at least (”;1).
Later, Chapuy and Féray [4] pointed out that the conjecture could be proved by using Jucys-Murphy
elements. In this paper, we generalize this to the following:

Theorem 1.4. The eigenvalues of I' (S, Cy(r)) are integers.

In fact, Theorem 1.4 follows from Theorem 3.4 which states that for certain subsets S of S, the
eigenvalues of I'(S;, S) are integers.

1.2. Arrangement graphs

For k < n, a k-permutation of [n] is an injective function from [k] to [n]. So any k-permutation
7 can be represented by a vector (i, ...,i) where w(j)=1ij for j=1,...,k. Let 1<r<k<n.
The (n,k,r)-arrangement graph A(n,k,r) has all the k-permutations of [n] as vertices and two
k-permutations are adjacent if they differ in exactly r positions. Formally, the vertex set V (n, k) and
edge set E(n,k,r) of A(n,k,r) are
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