

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On the eigenvalues of certain Cayley graphs and arrangement graphs

Bai Fan Chen^a, Ebrahim Ghorbani^{b,c}, Kok Bin Wong^{a,*}

- ^a Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
- ^b Department of Mathematics, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
- ^c School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

ARTICLE INFO

Article history: Received 30 October 2013 Accepted 25 November 2013 Available online 11 December 2013 Submitted by R. Brualdi

MSC: 05C50 20C10 05A05

Keywords: Arrangement graph Cayley graph Symmetric group Spectrum integrality

ABSTRACT

In this paper, we show that the eigenvalues of certain classes of Cayley graphs are integers. The (n,k,r)-arrangement graph A(n,k,r) is a graph with all the k-permutations of an n-element set as vertices where two k-permutations are adjacent if they differ in exactly r positions. We establish a relation between the eigenvalues of the arrangement graphs and the eigenvalues of certain Cayley graphs. As a result, the conjecture on integrality of eigenvalues of A(n,k,1) follows.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Γ be a simple graph with vertex set ν . The adjacency matrix of Γ is a $\nu \times \nu$ matrix where its rows and columns indexed by the vertex set of Γ and its (u, ν) -entry is 1 if the vertices u and ν are adjacent and 0 otherwise. By eigenvalues of Γ we mean the eigenvalues of its adjacency matrix. A graph is said to be integral if all its eigenvalues are integers. All graphs considered are finite (multi-)graphs without self-loops.

E-mail addresses: tufofo1120@gmail.com (B.F. Chen), e_ghorbani@ipm.ir (E. Ghorbani), kbwong@um.edu.my (K.B. Wong).

^{*} Corresponding author.

1.1. Cayley graphs

Let G be a finite group and S be an inverse closed subset of G. The Cayley graph $\Gamma(G,S)$ is the graph which has the elements of G as its vertices and two vertices $u,v\in G$ are joined by an edge if and only if v=su for some $s\in S$.

A Cayley graph $\Gamma(G, S)$ is said to be *normal* if S is closed under conjugation. It is well known that the eigenvalues of a normal Cayley graph $\Gamma(G, S)$ can be expressed in terms of the irreducible characters of G.

Theorem 1.1. (See [2,12,18,19].) The eigenvalues of a normal Cayley graph $\Gamma(G, S)$ are given by

$$\eta_{\chi} = \frac{1}{\chi(1)} \sum_{s \in S} \chi(s),$$

where χ ranges over all the irreducible characters of G. Moreover, the multiplicity of η_{χ} is $\chi(1)^2$.

Let S_n be the symmetric group on $[n] = \{1, ..., n\}$ and $S \subseteq S_n$ be closed under conjugation. Since central characters are algebraic integers [16, Theorem 3.7 on p. 36] and that the characters of the symmetric group are integers ([16, 2.12 on p. 31] or [21, Corollary 2 on p. 103]), by Theorem 1.1, the eigenvalues of $\Gamma(S_n, S)$ are integers.

Corollary 1.2. The eigenvalues of a normal Cayley graph $\Gamma(S_n, S)$ are integers.

In general, if *S* is not closed under conjugation, then the eigenvalues of $\Gamma(S_n, S)$ may not be integers [13] (see also [1,17,20] for related results on the eigenvalues of certain Cayley graphs).

Problem 1.3. Find conditions on S, so that the eigenvalues of $\Gamma(S_n, S)$ are integers.

Let $2 \le r \le n$ and Cy(r) be the set of all r cycles in S_n which do not fix 1, i.e.

$$Cy(r) = \{ \alpha \in S_n \mid \alpha(1) \neq 1 \text{ and } \alpha \text{ is an } r\text{-cycle} \}.$$

For instance, $Cy(2) = \{(1\ 2), (1\ 3), \dots, (1\ n)\}$. It was conjectured by Abdollahi and Vatandoost [1] that the eigenvalues of $\Gamma(S_n, Cy(2))$ are integers, and contain all integers in the range from -(n-1) to n-1 (with the sole exception that when n=2 or 3, zero is not an eigenvalue of $\Gamma(S_n, Cy(2))$). The second part of the conjecture was proved by Krakovski and Mohar [17]. In fact, they showed that for $n \ge 2$ and each integer $1 \le l \le n-1$, $\pm (n-l)$ are eigenvalues of $\Gamma(S_n, Cy(2))$ with multiplicity at least $\binom{n-1}{l-1}$. Furthermore, if $n \ge 4$, then 0 is an eigenvalue of $\Gamma(S_n, Cy(2))$ with multiplicity at least $\binom{n-1}{l-1}$. Later, Chapuy and Féray [4] pointed out that the conjecture could be proved by using Jucys–Murphy elements. In this paper, we generalize this to the following:

Theorem 1.4. The eigenvalues of $\Gamma(S_n, Cy(r))$ are integers.

In fact, Theorem 1.4 follows from Theorem 3.4 which states that for certain subsets S of S_n , the eigenvalues of $\Gamma(S_n, S)$ are integers.

1.2. Arrangement graphs

For $k \le n$, a k-permutation of [n] is an injective function from [k] to [n]. So any k-permutation π can be represented by a vector (i_1, \ldots, i_k) where $\pi(j) = i_j$ for $j = 1, \ldots, k$. Let $1 \le r \le k \le n$. The (n, k, r)-arrangement graph A(n, k, r) has all the k-permutations of [n] as vertices and two k-permutations are adjacent if they differ in exactly r positions. Formally, the vertex set V(n, k) and edge set E(n, k, r) of A(n, k, r) are

Download English Version:

https://daneshyari.com/en/article/4599734

Download Persian Version:

 $\underline{https://daneshyari.com/article/4599734}$

Daneshyari.com