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In this paper, we apply a complete pivoting strategy to compute
the left-looking version of AINV preconditioner for linear systems.
As the preprocessing, the MultiLevel Nested Dissection reorder-
ing has also been applied. We have used this preconditioner as
the right preconditioner for several linear systems where the co-
efficient matrices have been downloaded from the University of
Florida Sparse Matrix Collection. Numerical experiments presented
in this paper indicate the effectiveness of such a complete pivoting
on the quality of left-looking version of AINV preconditioner.
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1. Introduction

Krylov subspace methods [9] are examples of iterative methods to solve the linear system of equa-
tions of the form

Ax = b, (1)

where the coefficient matrix A ∈ R
n×n is nonsingular, large, sparse and nonsymmetric and also

x,b ∈ R
n . A good preconditioner will accelerate the solution of this system.
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An explicit preconditioner M for system (1) is an approximation of matrix A−1, i.e., M ≈ A−1. This
preconditioner will change the original system (1) to the right preconditioned system

AMu = b; Mu = x, (2)

and then, the Krylov subspace methods are applied to solve system (2). The most well-known explicit
preconditioner is the AINV preconditioner [1]. There are two left and right-looking versions for this
preconditioner. The left and right-looking versions of this preconditioner are computed when one ap-
plies dropping in the left and right-looking versions of A-biconjugation process, respectively. Suppose
that matrix A has the

A = L̄ D̄Ū , (3)

factorization where L̄ and Ū T are unit lower triangular matrices and D̄ is a diagonal matrix. IJK ver-
sion of Gaussian Elimination is an algorithm to compute this factorization [9]. This process works with
the Schur-Complement matrix, explicitly and computes L̄ and Ū factors column-wise and row-wise,
respectively.

Based on the connection between the right-looking version of A-biconjugation process and the IJK
version of Gaussian Elimination, Bollhöfer and Saad have presented a complete pivoting strategy for
the right-looking version of AINV preconditioner [3]. In this paper, we extend pivoting for the left-
looking version of this preconditioner and consider the effectiveness of this pivoting. This extension
is based on the connection between the left-looking version of A-biconjugation process and the IJK
version of Gaussian Elimination. Left-looking version of A-biconjugation process does not deal with
the Schur-Complement matrix, explicitly, but it enables us to generate special parts of this matrix, im-
plicitly. We have used the pivoting protocol of the IJK version of Gaussian Elimination as a navigator
to apply pivoting in the left-looking version of A-biconjugation process.

In this paper, notation Xi: j,k indicates the entries of the k-th column of matrix X whose row
indices are between i and j. We have also used Xk,i: j to show the entries of the k-th row of matrix X
whose column indices are between i and j. X:,k and Xk,: are considered as the k-th column and the
k-th row of matrix X , respectively. In this paper, the term MLND reordering refers to the MultiLevel
Nested Dissection reordering.

In Section 2 of this paper, we study the relation between the left-looking version of A-biconju-
gation process and the IJK version of Gaussian Elimination. In Section 3, the left-looking version of
AINV preconditioner, which is computed by using a complete pivoting strategy, has been presented.
In Section 4, numerical experiments are proposed and implementation details are discussed.

2. Relation between the left-looking version of A-biconjugation process and the IJK version of
Gaussian Elimination

Algorithm 1, computes the factorization (3) and is termed the IJK version of Gaussian Elimina-
tion [4,8]. At the beginning of step i of this algorithm, the relation
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(4)

holds where ḡk ∈ R
(n−k)×1 and h̄k ∈ R

1×(n−k) , for 1 � k � i − 1, are the already computed columns
and rows of the matrices L̄ and Ū , respectively and the submatrix ( S̄(i−1)) j,k�i is available. At the
end of step i of this algorithm, matrix S̄(i−1) will change to a new matrix which we term it S̄(i) . At
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