

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Perturbations on constructible lists preserving realizability in the NIEP and questions of Monov

Anthony G. Cronin*, Thomas J. Laffey

School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

ARTICLE INFO

Article history: Received 13 July 2013 Accepted 2 December 2013 Available online 2 January 2014 Submitted by R. Brualdi

MSC: 15A18 15A29

Keywords: Nonnegative matrices Inverse eigenvalue problem

ABSTRACT

In [5] the authors showed that if $\sigma=(\lambda_1,\lambda_2,\overline{\lambda_2},\lambda_4,\ldots,\lambda_n)$ is realizable where λ_1 is the Perron eigenvalue and λ_2 is non-real, then so too is $\sigma=(\lambda_1+4t,\lambda_2+t,\overline{\lambda_2}+t,\lambda_4,\ldots,\lambda_n)$. They asked if 4 can be replaced by 1 or 2 or what is the least possible multiple $c\geqslant 1$ of t in order for this perturbation to be realizable. In [2] the authors showed that for n=4 one can find certain spectra for which the result holds when c=1 provided t is "small". In this paper we show that c=1 is best possible and we construct a realizing matrix for c=1 when t is sufficiently small. We also address some questions of Monov concerning the realizability of the derivative of a realizable polynomial and if such a polynomial must have positive power sums

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks for a complete set of necessary and sufficient conditions on a list $\sigma = (\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n)$ of complex numbers so that this list be the set of eigenvalues of an $n \times n$ entrywise nonnegative matrix A. If

^{*} Corresponding author.

E-mail addresses: Anthony.Cronin@ucd.ie (A.G. Cronin), thomas.laffey@ucd.ie (T.J. Laffey).

we restrict the list σ to be real then the problem is called the real nonnegative inverse eigenvalue problem (RNIEP). The list σ is said to be realizable if there exists such an entrywise nonnegative matrix A of order n with spectrum σ . Also, we say that the polynomial $f(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$ is realizable when such an A has f(x) as its characteristic polynomial. If $\rho = \max\{|\lambda_j|: j = 1, 2, ..., n\}$, then ρ is an eigenvalue of A and there exists an eigenvector $v \ge 0$ with $Av = \rho v$. We call ρ and v the Perron root and Perron eigenvector respectively. An obvious necessary condition for the NIEP is that the traces of the powers of the realizing matrix A must be nonnegative, hence

$$s_k := \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k \geqslant 0.$$

A stronger condition found independently by Loewy and London [10], and Johnson [6], known as the JLL inequalities state that

$$n^{m-1}s_{km} \geqslant s_k^m$$
 for $m, k = 1, 2, \dots$

if σ is the spectrum of a nonnegative matrix. An interesting problem in this area is as follows:

Given a realizable list $\sigma = (\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n)$ and a realizing matrix A, what perturbations can we perform on the list σ which will again yield a realizable list σ' with realizing matrix A'? In [1], Brauer (Theorem 1) showed that if $\sigma = (\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n)$ is realizable then $\sigma = (\lambda_1 + t, \lambda_2, \lambda_3, \dots, \lambda_n)$ is also realizable for all t > 0, where λ_1 represents the Perron root. The proof uses the Perron eigenvector v to construct a rank-one perturbation $B = A + tvu^t$ where $u \geq 0$ and $u^tv = 1$. Perfect [13] extended this result to show how to change r eigenvalues of an $n \times n$ nonnegative matrix with r < n without changing the remaining n - r eigenvalues. This result uses a rank-r perturbation again using the r eigenvectors corresponding to $\lambda_1, \lambda_2, \dots, \lambda_r$. Rojo and Soto [15] extended these results further to find a new realizability criterion for the RNIEP.

2. Perturbation results

Of more immediate relevance to this discussion are the perturbation results of Wuwen Guo [4].

In Theorem 3.1 [4] he proves

Theorem 1. Let $\sigma = (\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n)$ be realizable by a nonnegative matrix, where λ_1 is the Perron root and λ_2 is real. Then, for all $t \ge 0$, the list $(\lambda_1 + t, \lambda_2 + \varepsilon t, \lambda_3, \dots, \lambda_n)$ is also realizable for all $\varepsilon \in [-1, 1]$.

Laffey, in Theorem 1.1 [7] (see [5] for an alternative proof) proves an analogue of Guo's theorem in the non-real case by showing

Download English Version:

https://daneshyari.com/en/article/4599751

Download Persian Version:

https://daneshyari.com/article/4599751

Daneshyari.com