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The concept of walk entropy of a graph has been recently
introduced in E. Estrada et al. (2014) [4]. In that paper
the authors formulated two conjectures about walk entropies.
In the present note we prove the first of these two conjectures
and propose a stronger form of it.
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1. Introduction

The notion of walk entropy in a graph, recently introduced by Estrada, de la Peña and
Hatano [4], enjoys a number of interesting properties that can be used to characterize
and analyze graphs.

For a simple, undirected graph G = (V,E) with n nodes v1, . . . , vn and adjacency
matrix A, the walk entropy of G is defined as

SV (G, β) = −
n∑

i=1

[eβA]ii
Z

ln [eβA]ii
Z

, where Z = Tr
[
eβA

]
.
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Here β > 0 can be interpreted as an inverse temperature. In other words, the walk
entropy of G is the Gibbs–Shannon entropy associated with the probability distribution

pi(β) = [eβA]ii
Tr[eβA] , 1 � i � n

on V . As noted in [4], natural logarithms or base 2 ones can be used interchangeably in
the definition of SV (G, β) without any significant differences.

Recall that for a given β > 0, the subgraph centrality [7] of a node vi ∈ V is given by

SC (i, β) =
[
eβA

]
ii

=
∞∑

k=0

βk[Ak]ii
k! .

The subgraph centrality of a node counts the number of closed walks starting and ending
at that node, with smaller weights assigned to longer walks (the total number of closed
walks of length k is scaled by βk/k!). Frequently, the inverse temperature β is set equal
to 1. Subgraph centrality has been used as an effective measure of the importance of
nodes in a network [3,5,6]. As with all (reasonable) centrality measures, however, there
are graphs for which subgraph centrality does not discriminate between nodes; that is,
graphs for which

SC (i, β) = 1
n

Tr
[
eβA

]
, ∀i = 1, . . . , n. (1.1)

This is true, for example, for G = Cn (a cycle with n vertices) and, more generally, for
all vertex-transitive graphs [8]. Recall that a graph G = (V,E) is vertex-transitive if,
given any two nodes u, v ∈ V , there exists an automorphism fu,v : V → V such that
fu,v(u) = v. Other examples of graphs satisfying (1.1) are mentioned in [4].

We will also need the definition of a walk-regular graph [8]. A graph G = (V,E) is
walk-regular if for all k = 0, 1, 2, . . . , the diagonal entries of Ak are all equal

[
Ak

]
ii

= c(k), ∀i = 1, . . . , n.

In particular, walk-regular graphs are regular (all the nodes have the same degree).
The name walk-regular originates from the fact that [Ak]ii equals the number of closed
walks of length k in G starting and ending at node i. We note that thanks to the
Cayley–Hamilton Theorem, it is sufficient that the above conditions hold for all 1 �
k � n − 1. It is obvious that if a graph is walk-regular, (1.1) must hold; hence, for a
walk-regular graph, subgraph centrality does not discriminate between nodes.

It is easy to see that for a given value of β, the walk entropy SV (G, β) assumes
its maximum value when, and only when, all nodes have the same subgraph centrality
SC (i, β) and that this maximum is given by

SV (G, β) = −
n∑

i=1

1
n

ln 1
n

= lnn.
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