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This paper deals with the stability of some one-step methods for
computing the action of a matrix exponential on a vector, i.e. e Ab,
where A is an n-by-n matrix and b is a vector of dimension n.
The methods are based on certain assumptions made for the case
that A is a matrix having sufficiently small norm. If the norm of
A is larger, a fixed step size is used to perform a scaling of A.
An analysis of the roundoff error of the computed e Ab shows
that these methods are backward stable if A is Hermitian, and
forward stable if, for example, A is skew-Hermitian or if A is
real and essentially nonnegative and b is real and nonnegative. In
addition, an upper bound on the forward error of the computed
e Ab is obtained for all A and b. This bound, which is expressed in
terms of the condition number, is evaluated for several examples
of the data. The results of this paper partly apply to the algorithm
proposed by Al-Mohy and Higham (2011) for computing e Ab.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The action of the exponential of a matrix A ∈ C
n×n on a vector b ∈ C

n , i.e. e Ab, is an operation,
which plays a fundamental role in the solution of linear ordinary differential equations. It is well-
known, for example, that the initial value problem

dx

dt
= Ax, x(0) = b (1.1)

has the solution x(t) = et Ab for t ∈ R, which means that e Ab solves (1.1) at t = 1. It has further been
shown that some exponential integrator methods for the numerical solution of nonlinear initial value
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problems can be based on this operation [4]. The computation of e Ab can be regarded as a standard
task in the field of matrix functions (see e.g. [16]).

A popular method for computing e A is the scaling and squaring method (see [22,15] and the
references therein). A version of this method is implemented in MATLAB. It therefore seems to be
straightforward to evaluate e Ab by computing e A and multiplying the computed e A into b. This ap-
proach is, however, not adequate if A is large and sparse or et Ab is needed for many values of t . In
the former case, a computation of e A should be avoided, since the exponential of a sparse matrix is
generally full [22]. Krylov subspace techniques can be used in that case to reduce the e Ab problem
to a corresponding problem for a small dense matrix (see e.g. [12,17,10]). The algorithm, which has
recently been proposed by Al-Mohy and Higham [4], is also suitable for computing e Ab for general
data A and b. Moreover, it allows an efficient evaluation of et Ab on grids of equally spaced values
of t . The stability of this and related algorithms is the subject of the present analysis.

It was observed in numerical experiments that the mentioned algorithm by Al-Mohy and Higham
as well as algorithms for computing e A , for example the scaling and squaring method, behave in a
forward stable manner for a great variety of the data (see [15] and [4] for the e A and e Ab problem,
respectively). On the contrary, only little is known about the forward (or backward) stability of these
algorithms in general. The most striking result is that of [5], where it was shown that the scaling
and squaring method is forward stable for all matrices A ∈ R

n×n , which are normal or essentially
nonnegative or for which a nonsingular diagonal matrix D ∈ R

n×n exists so that D−1 AD is essentially
nonnegative. Note that a matrix A = (aij) ∈ R

n×n is called essentially nonnegative if aij � 0 for i �= j.
In addition, bounds on the roundoff error of the computed e A were obtained for all A ∈ R

n×n [29,5].
However, these bounds were not related to the condition number of the e A problem and are therefore
not very informative.

The present paper deals with one-step methods of a certain type for computing e Ab. These meth-
ods use a fixed step size h to perform a scaling of A. More precisely, h is the reciprocal of a positive
integer q, which is chosen so that h A has sufficiently small norm. Since xq = e Ab is the last element
of the finite sequence xk = eh A xk−1 for k = 1, . . . ,q, with x0 = b, an approximation of the action of
eh A on a vector is needed for each step. The choice and algorithmic realization of this approximation
determine the method. However, certain conditions, which ensure that the action of eh A is always
computed with high accuracy, are assumed to be satisfied. To some extent, the assumptions apply to
the algorithm by Al-Mohy and Higham [4]. There the method of scaling allows larger step sizes than
in the present case, provided that A is nonnormal. This makes the algorithm more efficient and often
also more accurate.

Our aim is to study the effects of rounding errors on the accuracy of the computed result by using
a backward and forward error analysis. It is shown that there are at least some classes of pairs (A,b),
for which the algorithms of this paper are numerically stable:

If A ∈ C
n×n is Hermitian and b ∈ C

n then the computed e Ab has a normwise backward error,
which is of the order m(ε)ε , where ε is the unit roundoff and m(ε) is a positive integer, which does
not grow faster than a constant times log 1

ε as ε → 0.
If A ∈ C

n×n is skew-Hermitian and b ∈ C
n or if A ∈ R

n×n is essentially nonnegative and b ∈ R
n is

a vector satisfying b � 0 or b � 0 then the computed e Ab has a normwise forward error, which is of
the order m(ε)ε times the condition number of the e Ab problem.

In addition, the normwise forward error of the computed e Ab is estimated in terms of the condi-
tion number for all A ∈ C

n×n and b ∈ C
n . This estimate allows us to formulate a sufficient condition

for the algorithms to behave in a forward stable manner. For many data A and b this condition is
satisfied, but there are also cases where it is not.

The present analysis uses an approach, which is completely different from that of [5]. The classical
concept of backward stability is weakened, if necessary, by enlarging the space of perturbations of A.
It is shown that, for given A ∈ C

n×n and b ∈ C
n , the computed e Ab can be interpreted as the exact

solution of a perturbed initial value problem at t = 1, where this problem is obtained from (1.1) by
replacing A and b by A + E and b + f , respectively, with both E and f ∈ C

n having norm of order
m(ε)ε . In general, the perturbation E of A is, however, a continuous function of t ∈ [0,1] with values
in C

n×n and not a constant matrix, as it is usually required. Backward stability in the strict sense is
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