Smith forms for adjacency matrices of circulant graphs

Gerald Williams
Department of Mathematical Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK

A R T I C L E I N F O

Article history:

Received 23 October 2012
Accepted 7 November 2013
Submitted by R. Brualdi

MSC:

05C50
15A21
20F05

Keywords:
Smith normal form
Circulant graph
Adjacency matrix

Abstract

We calculate the Smith normal form of the adjacency matrix of each of the following graphs or their complements (or both): complete graph, cycle graph, square of the cycle, power graph of the cycle, distance matrix graph of cycle, Andrásfai graph, Doob graph, cocktail party graph, crown graph, prism graph, Möbius ladder. The proofs operate by finding the abelianization of a cyclically presented group whose relation matrix is column equivalent to the required adjacency matrix.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The circulant matrix $\operatorname{circ}_{n}\left(a_{0}, \ldots, a_{n-1}\right)$ is the $n \times n$ matrix whose first row is $\left(a_{0}, \ldots, a_{n-1}\right)$ and where row $(i+1)(0 \leqslant i \leqslant n-2)$ is a cyclic shift of row i by one column. A circulant graph is a graph that is isomorphic to a graph whose adjacency matrix is circulant. We shall write $A(\Gamma)$ for the adjacency matrix of a graph Γ. Given graphs Γ, Γ^{\prime} if $\operatorname{det}(A(\Gamma)) \neq \operatorname{det}\left(A\left(\Gamma^{\prime}\right)\right)$ (in particular if precisely one of $A(\Gamma), A\left(\Gamma^{\prime}\right)$ is singular) then Γ, Γ^{\prime} are non-isomorphic. Similarly, if $\operatorname{rank}(A(\Gamma)) \neq$ $\operatorname{rank}\left(A\left(\Gamma^{\prime}\right)\right)$ then Γ, Γ^{\prime} are non-isomorphic. Singularity, rank, and determinants of various families of circulant graphs are considered (for example) in [3,7,16,23].

For an $n \times n$ integer matrix M, the Smith normal form of M, written $\operatorname{SNF}(M)$, is the $n \times n$ diagonal integer matrix

$$
S=\operatorname{diag}_{n}\left(d_{0}, \ldots, d_{n-1}\right)
$$

[^0]where $d_{0}, \ldots, d_{n-1} \in \mathbb{N} \cup\{0\}$ and $d_{i} \mid d_{i+1}(0 \leqslant i \leqslant n-2)$ is such that there exist invertible integer matrices P, Q such that $P M Q=S$. The matrix S is unique and may be obtained from M using (integer) elementary row and column operations. Given graphs Γ, Γ^{\prime} if $\operatorname{SNF}(A(\Gamma)) \neq \operatorname{SNF}\left(A\left(\Gamma^{\prime}\right)\right)$ then Γ, Γ^{\prime} are non-isomorphic. Since also $\operatorname{det}(\operatorname{SNF}(A(\Gamma)))=|\operatorname{det}(A(\Gamma))|$ and $\operatorname{rank}(\operatorname{SNF}(A(\Gamma)))=\operatorname{rank}(A(\Gamma))$ the Smith normal form is a more refined invariant than (the absolute value of) the determinant and the rank.

The purpose of this article is to calculate the Smith normal form for the adjacency matrices of various families of circulant graphs. The calculations of determinant, rank and determination of singularity of adjacency matrices of circulant graphs cited above use a well known number theoretic expression for the eigenvalues of a circulant matrix and a graph theoretic formula for the determinant of the adjacency matrix of a graph, due to Harary [5, Proposition 7.2]. Our methods use techniques from combinatorial group theory, namely the application of Tietze transformations (the addition or removal of generators or relations to or from the presentation while leaving the group unchanged) on cyclic presentations. We now outline our method of proof; for further background we refer the reader to [14].

Let $P=\left\langle x_{0}, \ldots, x_{n-1} \mid r_{0}, \ldots, r_{m-1}\right\rangle$ be a group presentation defining a group G. For $0 \leqslant i \leqslant n-1$, $0 \leqslant j \leqslant m-1$ let $a_{i j}$ denote the exponent sum of generator x_{i} in relator r_{j} (that is, the number of times x_{i} appears in r_{j}, counting multiplicities and sign). The matrix $M=\left(a_{i j}\right)_{n \times m}$ is called the relation matrix of P. The abelianization G^{ab} of G can be written in the form

$$
\begin{equation*}
\mathbb{Z}_{\delta_{0}} \oplus \cdots \oplus \mathbb{Z}_{\delta_{p-1}} \oplus \mathbb{Z}^{q} \tag{1}
\end{equation*}
$$

where $1<\delta_{0}\left|\delta_{1}\right| \cdots \mid \delta_{p-1}$ and $p+q \leqslant n$. These numbers determine the non-unity diagonal entries of the Smith normal form for the relation matrix of any presentation of G; in particular we have

$$
\begin{equation*}
\operatorname{SNF}(M)=\operatorname{diag}_{n}(1, \ldots, 1, \delta_{0}, \ldots, \delta_{p-1}, \underbrace{0, \ldots, 0}_{q}) . \tag{2}
\end{equation*}
$$

Let $w=w\left(x_{0}, \ldots, x_{n-1}\right)$ be a word in generators x_{0}, \ldots, x_{n-1}. The cyclically presented group $G_{n}(w)$ is the group defined by the cyclic presentation

$$
P_{n}(w)=\left\langle x_{0}, \ldots, x_{n-1} \mid w_{0}, \ldots, w_{n-1}\right\rangle
$$

where $w_{i}=w\left(x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+(n-1)}\right)$ (subscripts $\left.\bmod n\right)$. The relation matrix of $P_{n}(w)$ is the circulant matrix $\operatorname{circ}_{n}\left(a_{0}, \ldots, a_{n-1}\right)$ where for each $0 \leqslant i \leqslant n-1$ the entry a_{i} is the exponent sum of x_{i} in $w\left(x_{0}, \ldots, x_{n-1}\right)$. Thus our method of proof is as follows. Given a circulant matrix $C=\operatorname{circ}_{n}\left(a_{0}, \ldots, a_{n-1}\right)$ we define a suitable word $w\left(x_{0}, \ldots, x_{n-1}\right)$ so that the exponent sum of x_{i} in $w\left(x_{0}, \ldots, x_{n-1}\right)$ is $a_{i}(0 \leqslant i \leqslant n-1)$. We use Tietze transformations to simplify the presentation to obtain the abelianization G^{ab} in the form (1) and hence obtain $\operatorname{SNF}(C)$.

In principle, our proofs can be written purely in terms of elementary row and column operations, but cyclically presented groups provide a convenient framework and language within which to operate. We digress from this method of proof in Section 5 where we make use of multiplicativity results of Newman [17]. In Table 1 we summarize the graphs and adjacency matrices (up to column equivalence), and point to the result which gives the Smith form. (We write $\bar{\Gamma}$ to denote the complement of a graph Γ.)

2. Circulant graphs

In this section we review the definitions of various families of circulant graphs (the webpage [25] is a useful resource for such information) and, where necessary and possible, relabel vertices so that their adjacency matrices are column equivalent to a matrix of one of the following forms:

$$
\begin{aligned}
& F_{n, s}=\operatorname{circ}_{n}(\underbrace{1, \ldots, 1}_{s}, \underbrace{0, \ldots, 0}_{n-s}) \quad(1 \leqslant s \leqslant n), \\
& F_{n, s, r}=\operatorname{circ}_{n}(\underbrace{v, \ldots, v}_{s}, \underbrace{0, \ldots, 0}_{n-r s}) \quad(r s-(r-1) \leqslant n, 1 \leqslant r),
\end{aligned}
$$

https://daneshyari.com/en/article/4599769

Download Persian Version:
https://daneshyari.com/article/4599769

Daneshyari.com

[^0]: E-mail address: gwill@essex.ac.uk.
 0024-3795/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.laa.2013.11.006

