
The Journal of Systems and Software 83 (2010) 2478–2486

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Code analyzer for an online course management system

Jong Yih Kuo ∗, Fu Chu Huang
Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan

a r t i c l e i n f o

Article history:
Received 14 December 2009
Received in revised form 12 May 2010
Accepted 15 July 2010
Available online 24 July 2010

Keywords:
Intelligent agent
Program similarity
Program plagiarism

a b s t r a c t

The online course management system (OCMS) assists online instruction in various aspects, including
testing, course discussion, assignment submission, and assignment grading. This paper proposes a plagia-
rism detection system whose design is integrated with an OCMS. Online assignment submission is prone
to easy plagiarism, which can seriously influence the quality of learning. In the past, plagiarism was
detected manually, making it very time-consuming. This research thus focuses on developing a system
involving code standardization, textual analysis, structural analysis, and variable analysis for evaluating
and comparing programming codes. An agent system serves as a daemon to analyze the program codes
for OCMS. For textual analysis, the Fingerprinting Algorithm was used for text comparison. Structurally,
a formal algebraic expression and a dynamic control structure tree (DCS Tree) were utilized to rebuild
and evaluate the program structure. For variables, not only the relevant information for each variable
was recorded, but also the programming structure was analyzed where the variables are positioned. By
applying a similarity measuring method, a similarity value was produced for each program in the three
aspects mentioned above. This research implements an Online Detection Plagiarism System (ODPS) pro-
viding a web-based user interface. This system can be applied independently for assignment analysis of
Java programs. After three comparison experiments with other researches, the results demonstrated the
ODPS has many advantages and good performance. Meanwhile, a combined approach is proven that it is
better than a single approach for source codes of various styles.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

With growing attention being devoted to internet-assisted
teaching, many online course management systems have been
developed (Broder, 1997; Adaptive Brusilovsky, 2001; Perkowitz
and Etzioni, 1997). Online course management systems support
chiefly various activities in online teaching, including testing,
course discussion, assignment submission, and assignment grading
(Frasson and Aimeur, 1998). However, the coding style for pro-
gramming often varies according to each programmer’s personal
habit, and is reflected in the use of different techniques in design-
ing with the same programming language. If the similarity between
the two samples is high, then it is possibly a case of plagiarism.
To plagiarize a program, most people rewrite the original version,
including part or all of its interface or contents, to avoid easy human
identification.

If the differences between codes are compared manually, it
will be very time-consuming. As the coding scale becomes larger
and more complex, the success rate of identification also dimin-

∗ Corresponding author. Tel.: +886 2 27712171x4237; fax: +886 2 87732945.
E-mail addresses: jykuo@ntut.edu.tw (J.Y. Kuo), t7599002@ntut.edu.tw

(F.C. Huang).

ishes. In the past, purely textual or structural comparison methods
have generally been employed to compare documents and pro-
grams, though these methods all have their limitations. This
is in part because slight differences in textual comparison will
cause the similarity rate to vary significantly. For example, “Sys-
tem.out.println(“This is my first java program, hello world!”);” and
“String str = “This is my first java program, hello world!”;” involve
completely different programming source codes, but there appears
to be many similarities. If it is only evaluated by textual compari-
son, the output similarity value may be greater than expected. In
addition, both structural analysis and variable analysis are liable
to identify two programs of the same structure, but for different
purposes as having a high similarity match. To improve this situa-
tion, combining code standardization, textual analysis, structural
analysis, and variable analysis was proposed for enhancing the
comparison ability.

There are a number of methods for detecting plagiarism in
assignments, and most methods focus only on how to improve
similarity. Although increasing the similarity is useful for detect-
ing plagiarism in assignments, how to make a correct detection is
also very important. Using a single method will probably get an
overly high or low similarity in different cases and it is very easy
to make wrong estimation. In view of this, three analysis meth-
ods were combined to build an Online Detection Plagiarism System

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.07.037

dx.doi.org/10.1016/j.jss.2010.07.037
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:jykuo@ntut.edu.tw
mailto:t7599002@ntut.edu.tw
dx.doi.org/10.1016/j.jss.2010.07.037


J.Y. Kuo, F.C. Huang / The Journal of Systems and Software 83 (2010) 2478–2486 2479

(ODPS) plugged into an online course management system (OCMS)
for detecting similarity. The ODPS serves as a daemon module
for performing analysis. Pre-analyzing the sample through struc-
tural and variable analyses before textual analysis will increase the
precision of textual analysis. For textual analysis, the Document
Fingerprinting Algorithm is employed. For structural analysis, the
formal algebraic expression and the DCS Tree structure are used
to rebuild and examine the program composition. For variables,
not only the information of each variable is a relevant record, but
also the formation of variables for calculating similarity is also
structurally analyzed. As for fingerprinting, the document is trans-
lated into k-grams, and finds a unique fingerprint representing this
document. Structural analysis uses formal algebraic expression to
simplify the code structure, and applies textual comparison to the
structural comparison problem to increase the accuracy of output
similarity. In terms of variable analysis, each variable in the code is
focused, and both statistical and architectural analyses were per-
formed. This allows the comparison process to be more flexible, and
produces a more precise similarity output. Thus, by combining tex-
tual analysis, structural analysis, and variable analysis, programs
that are likely to have been intentionally plagiarized can be distin-
guished.

This research examines previously developed online course
management systems, because submitted assignments are easily
copied. Programming courses are focused, and the processes such
as code standardization, textual analysis, structural analysis, and
variable analysis are applied to code evaluation. A hybrid approach
is proposed by combining and advancing three methods includ-
ing the Fingerprinting Algorithm (Schleimer et al., 2003), algebraic
expression (Canfora et al., 1998) and variable statistics (Donaldson
et al., 1981). The rest of the paper is organized as follows. Section
2 discusses the references used in our research. Section 3 presents
the proposed analysis method for the codes. Section 4 presents the
system design and testing results, and Section 5 contains conclu-
sions.

2. Background and related work

2.1. Textual analysis

Schleimer et al. (2003) proposed winnowing as a method for
textual comparison of web data. In this method, the tokens of doc-
ument are first partitioned into k-grams. k signifies the number
of characters in each k-gram block dictated by the user accord-
ing to the length of the document. After partitioning, all k-grams
are stored into a hash table for distribution. Then a partition is
made according to the hashed results, creating “fingerprints”, the
smallest unit of comparison. In other words, fingerprints are sets
of k-grams after implementing the hash algorithm. The compared
document creates one or more fingerprints. The possibility of col-
lision is minimized because the hash algorithm is utilized. To
compare two documents, the same fingerprints mean the same
original contents. The number of characters between two k-grams
is called the “gap”, usually in a size of one. When the documents
are longer, it is advisable to use larger gap values to decrease the
repetition of fingerprints, thus increasing system efficiency.

Winnowing algorithm: Set three variables, where n is the
length of the target document with the white spaces removed. k
is the length of a k-gram (in number of characters). g is the number
of characters between two adjacent k-grams. Variables k and g are
both user-specified, but note that n ≥ k must be satisfied. If n < k,
then the system will not be able to produce multiple k-grams for
comparison and the comparison result is produced only by chance.
For example, consider a sentence such as “I am a cat” with n value of
7. If the value of k is set to be 8, there would be no k-gram. Therefore,

Table 1
k-grams of “I am a super cat”.

iama amas masu
asup supe uper
perc erca rcat

it is important to choose an appropriate value of k. The document
is then partitioned into k-grams. For example, when k = 4 and g = 1,
if the target document is “I am a super cat” with the white spaces
removed, then the derived k-grams in order are shown in Table 1.
Next, these k-grams are processed with a hash function to retrieve
their hash value. All hash values (h1, . . ., hn) are placed in a numeri-
cal sequence. The set of some hash values in this sequence is called
the “window”, with its size also being user-specified. If window size
is represented by the variable w, then the range of every window
is (hi, . . ., hi+w−1), with i being the position of the first character
in this window in relation to the hash sequence. For the charac-
ter at position i, its corresponding window range is 1 ≤ i ≤ n − w + 1.
Last, by juxtaposing the hash values in every window, the section
that is being plagiarized can be efficiently detected. This is because
when a minimum value appears inside one window, then it is quite
possible that this value is also apparent in an adjacent window.
Therefore, only the minimum hash value in the first window is
recorded for overlapping windows. Only the unrepeated minima
are called fingerprints. At the same time, the positions of each fin-
gerprint are also recorded as a basis for comparison, thus increasing
the accuracy of analysis.

Gitchell developed a plagiarism detection system to compare
token sequences using a dynamic programming string alignment
approach (Gitchell and Tran, 1998). This approach first assigns a
score to each pair of characters in an alignment score. For example,
a match score of 1, a mismatch score of −1, and a gap score of
−2. The highest score of a block gives the score of an alignment.
The score between two sequences is then defined as the maximum
score among all alignments, which is easily calculated by dynamic
programming techniques. With this definition a similarity measure
between two sequences is defined as follows:

S = 2 ∗ score(s, t)
score(s, s) + score(t, t)

which is calculated from the individual score for each block, thus
giving a similarity value between 0.0 and 1.0. The higher the value,
the more similar the two sequences are.

Chen et al. (2004) proposed a metric according to Kolmogorov
complexity (Li and Vitányi, 1997) for measuring the amount of
shared information between two sequences. They use a compres-
sion algorithm involving the LZ data compression scheme (Ziv and
Lempel, 1977) to approximate heuristically the Kolmogorov com-
plexity. An information-based sequence distance is then defined as

d(x, y) ≈ 1 − (Comp(x) − Comp(x|y))
Comp(xy)

where x and y represent the strings, d(x, y) represents the similarity
value, and Comp(x) measures the amount of absolute information
the sequence x contains. That is, Comp(x) is length, in number of
bits, for the input x after being compressed by LZ data compres-
sion. Given another sequence, y, Comp(x|y) measures the amount
of information of x given y for free. By definition, Comp(x|y) is the
length of the shortest program that on input y prints x after being
compressed by LZ data compression. The denominator Comp(x|y)
is the total amount of information in the compressed concatenated
string xy.



Download	English	Version:

https://daneshyari.com/en/article/459978

Download	Persian	Version:

https://daneshyari.com/article/459978

Daneshyari.com

https://daneshyari.com/en/article/459978
https://daneshyari.com/article/459978
https://daneshyari.com/

