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diagonal elements of the exponential of the adjacency matrix,
known as the network communicability. The walk entropies are
strongly related to the walk regularity of graphs and line graphs.
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1. Introduction

With recent surge of interest in complex networks—large graphs representing the skeleton of com-
plex systems—in various fields, many quantities have been proposed to characterize the structural
properties of graphs [1,2]. Among various graph invariants, a special role has been played by the con-
cept of entropy. Entropy measures for graphs have been used for a long time in different fields [3-7],
but most of them have been introduced in ad hoc ways. Inspired by connections between quantum
information and graph theory the von Neumann entropy for graphs has been defined [5], which in
general depends on the regularity, the number of connected components, the shortest-path distance
and nontrivial symmetries in the graph. This entropy is defined on the basis of the eigenvalues of the
discrete Laplacian matrix L of a graph: S = — 22:1 wjlnu;j, where pj is an eigenvalue of L. Usually,
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the logarithm of basis 2 is used to express the entropy in bits, but we will use here natural logarithms
without any loss of generality. Previously, Estrada and Hatano [6] have defined the Shannon entropy
of a network by using a tight-binding Hamiltonian of the form H = —A, where A is the adjacency
matrix of the graph. That entropy is based on the probability p; =exp(;)/Z of finding the graph in
a state with energy given by —Aj, where 1; is an eigenvalue of A and Z = Z’}:l exp(ij).

Here, we define graph entropies based on walks in a graph. Walks in graphs play a fundamental
role in the analysis of the structure and dynamical processes in networks [8]. The new graph en-
tropies, namely the walk entropies, account for the amount of uncertainty in selecting a walk that
started (and ended) at a given node or edge of the graph. The walk entropies thereby characterize
the spread of a walk among the vertices or edges of the graph; in other words, we understand by the
walk entropies how much the walker is concentrated, or “localized” in just a few nodes. We show that
the behavior of the walk entropies is remarkably different for walk-regular, regular and non-regular
graphs. The walk entropies have their maximum for the walk-regular graphs, which include impor-
tant graphs such as vertex-transitive graphs, distance-regular graphs and strongly-regular graphs [9].
Some of these graphs, namely distance-regular and strongly-regular ones, have been studied in the
context of quantum information theory with different interesting properties [10-14|. We also analyze
the effects of the temperature on the walk entropies and the localization in different types of graphs.
We introduce the walk entropy for a graph in Section 3 and for the line graph of a graph in Section 4.
In Section 5, we relate the walk entropies to the localization of a walker on the nodes and edges of
a graph. Section 6 further argues the temperature effect on the relation between the walk entropies
and the localization.

2. Preliminaries

Before proceeding, we summarize a few definitions which are necessary to make this paper self-
contained. Let us consider here simple graphs G = (V, E) with |V|=n nodes and |E| = m edges; no
multiedges or self-loops are allowed. A walk of length k is a sequence of (not necessarily distinct)
nodes vg, V1, ..., Vk_1, Vi such that for each i=1, 2, ...,k there is a link from v;_; to vi. If vg = vy,
the walk is named a closed walk. The number of walks of length k from node p to node q is given
by (Ak)pq, where A is the adjacency matrix of the graph. A graph is said to be regular if every node
has the same degree. The degree of the node p, denoted by kj, is the number of edges incident to
it. A walk-regular graph is a graph for which (Ak)pp = w(k) for any k and for all nodes of the graph,
where w is a certain integer number. It is known that a walk-regular graph is also regular.

In order to define graph entropies based on the walks, we consider a random walker which walks
from one node to another by using the edges of the graph. This consideration is similar to the ones
previously used in Ref. [10] and more recently in several works [11,12]. We identify the negative
adjacency matrix as a Hamiltonian of the walker and consider the thermal Green’s function of the
graph as previously described by Estrada and Hatano [15]

Gpp(B) = (ple P |p) = (pleP*|p), (1)

where B = (kgT)~! is the inverse temperature. The temperature here is a homogeneous weight as-
signed to every link in the graph. It is a metaphor that measures the level of stress to which the
links of the graph, particular in the case of real-world networks, are submitted. The high-temperature
limit 8 — 0 indicates a high level of stress in the links which decreases the communication through
them to almost zero. This situation models what happen in the real world when there is a high level
of social agitation in socioeconomic networks, a biological system is submitted to extreme physiolog-
ical conditions or some sort of physical overexploitation is applied to engineering or infrastructural
networks. The reader is referred to [1] for further explanations.
The partition function for the graph is then defined by [12,14]

Z(B) = tr(eP?). (2)
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