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We discuss a general notion of “sparsity structure” and associated
recoveries of a sparse signal from its linear image of reduced di-
mension possibly corrupted with noise. Our approach allows for
unified treatment of (a) the “usual sparsity” and “usual �1 recov-
ery”, (b) block-sparsity with possibly overlapping blocks and asso-
ciated block-�1 recovery, and (c) low-rank-oriented recovery by nu-
clear norm minimization. The proposed recovery routines are nat-
ural extensions of the usual �1 minimization used in Compressed
Sensing. Specifically, within this framework, we present nullspace-
type sufficient conditions for the recovery to be precise on sparse
signals in the noiseless case. Then we derive error bounds for im-
perfect (nearly sparse signal, presence of observation noise, etc.)
recovery under these conditions. In all of these cases, we present
efficiently verifiable sufficient conditions for the validity of the as-
sociated nullspace properties.
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1. Introduction

We address the problem of recovering a representation w = Bx ∈ E of an unknown signal x ∈ X via
noisy observations

y = Ax + ξ

of x. Here X , E are Euclidean spaces, A : X → Rm and B : X → E are given linear sensing and repre-
sentation maps, and ξ is “uncertain-but-bounded” observation error satisfying φ(ξ) � ε where φ(·) is
a given norm on Rm , and ε is a given error bound. In particular, we are interested in computationally
tractable recovery procedures (estimators), e.g., a recovering routine of the form

y �→ x̂(y) ∈ Argmin
u∈X

{‖Bu‖: φ(Au − y)� ε
} �→ ŵ(y) = Bx̂(y),

and we would like this recovery to behave well provided that Bx is sparse in some prescribed sense.
In this paper, we introduce a rather general notion of sparsity structure in the representation space E
which, under some structural restriction on the norm ‖ · ‖, allows us to point out “nullspace-type”
conditions for the recovery to be precise provided that Bx is “s-sparse” with respect to our structure.
It also allows for explicit error bounds for “imperfect recovery” (noisy observations, near s-sparsity
instead of the exact one, etc.). To streamline Introduction, we assume here (but not in the main body
of the paper!) that E = X and B is the identity mapping, so that what is sparse “in some prescribed
sense” and what we want to recover is the signal x itself.

The motivation behind our notion of sparsity structure is to present a simple unified general frame-
work which allows, for instance, a simple treatment of three important particular cases:

• recovering s-sparse signals via �1 minimization,2

• recovering s-block-sparse signals via block-�1 minimization, and
• recovering matrices of low rank via nuclear norm minimization.

Within the past decade, each one of the above cases has individually received enormous and still
growing attention. The theory for sparse and block-sparse recovery, also referred to as Compressed
Sensing, goes back to [6,10–12,28]. One of its principal results states that if x is s-sparse and the
linear sensing map A possesses a certain well-defined property referred to as nullspace property, then
x can be reconstructed from the observation y = Ax via �1 minimization. It is also known that under
the (properly quantified) nullspace property, �1 recovery admits explicit error bounds when x is just
approximately sparse and/or the observations are corrupted by noise; these error bounds are just
linear in naturally quantified “sparsity violation” and the level of observation noise. Furthermore, it
was shown that a large class of random matrices satisfies a specific sufficient condition, the restricted
isometry property (RIP), for the nullspace property (see [10]).

A problem closely related to (block-)sparse recovery is that of low-rank recovery, which has many
applications in a diverse set of fields (for further details, see [7,23,24,26] and references therein).
Nuclear norm minimization is used as a computationally efficient tool for handling this difficult prob-
lem. The first formal performance guarantee for nuclear norm minimization is given in [23] under the
matrix RIP condition, a natural extension of the RIP condition used in sparse recovery. RIP appears
to be the most commonly used sufficient condition on the sensing map A for ensuring the validity
of recovery via (block-)�1/nuclear norm minimization. This condition is as follows: Given a positive
integer k and real δ ∈ (0,1), a linear sensing map A is said to possess RIP(k, δ) if

(1 − δ)‖x‖2 � ‖Ax‖2
2 � (1 + δ)‖x‖2

holds for all vectors x that have at most k nonzero entries/blocks in the case of usual/block-sparse
recovery, or all matrices x of rank at most k in the case of low-rank matrix recovery; here ‖ · ‖ is the

2 Here s-sparse is used in the usual sense, i.e., vectors with at most s nonzero entries.
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