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Let G be a connected graph of order n with Laplacian eigenvalues

μ1 � μ2 � · · · � μn−1 > μn = 0. The Laplacian-energy-like

invariant of the graph G is defined as

LEL = LEL(G) =
n−1∑
i=1

√
μi.

Lower and upper bounds for LEL are obtained, in terms of n, number

of edges, maximum vertex degree, and number of spanning trees.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V, E) be a simple undirected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge

set E(G), |E(G)| = m. Let di be the degree of the vertex vi for i = 1, 2, . . . , n. The maximum vertex

degree is denoted by �.

Let A(G) be the (0, 1)-adjacency matrix of G and D(G) be the diagonal matrix of vertex degrees.

The Laplacianmatrix of G is L(G) = D(G)−A(G). This matrix has nonnegative eigenvalues n � μ1 �
μ2 � · · · � μn = 0. Denote by Spec(G) = {μ1, μ2, . . . , μn} the spectrum of L(G), i.e., the Laplacian
spectrum of G. When more than one graph is under consideration, then we write μi(G) instead of μi.
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As well known [17], a graph of order n has

t = t(G) = 1

n

n−1∏
i=1

μi (1)

spanning trees and

n∑
i=1

μi = 2m. (2)

In 2008 Liu and Liu [16] considered a new Laplacian-spectrum-based graph invariant

LEL = LEL(G) =
n−1∑
k=1

√
μk (3)

and named it Laplacian-energy-like invariant. Themotivation for introducing LELwas in its analogy [10]

to the earlier much studied graph energy [6,9,14]. For details on LEL see the review [15], the recent

papers [3,10,11,22,20,18,7,5,19], and the references cited therein. For previously established bounds

on LEL see in [15,7]. Of these we mention the simple estimates [8,21,22]

√
2m � LEL �

√
2m(n − 1)

and their recent improvement [7]

√
4m(n − 1)

n
+ (n − 1)(n − 2)(n t)1/(n−1) � LEL �

√
2m(n − 1)2

n
+ (n t)1/(n−1) . (4)

In what follows, we obtain a few more lower and upper bounds on LEL in terms of n,m, �, and t.

As usual, Kn, Pn, K1, n−1 , and Kp, q (p + q = n) denote, respectively, the complete graph, the path,

the star, and a complete bipartite graph on n vertices.

2. Bounds on Laplacian-energy-like invariant

In order to arrive at one of our main results, we need four previously known lemmas.

Lemma 2.1. [17] Let G be a graph on n vertices with at least one edge. Then

μ1 � � + 1 . (5)

Moreover, if G is connected, then the equality in (5) holds if and only if � = n − 1.

Lemma2.2. [17]LetGbeagraphofordernandG its complement. IfSpec(G) = {μ1, μ2, . . . , μn−1, 0},
then Spec(G) = {n−μ1, n−μ2, . . . , n−μn−1, 0}. From this, it follows thatμ1(G) � nwith equality

holding if and only if G is disconnected.

Lemma 2.3. [2] Let G be a connected graph with n � 3 vertices. Then μ2 = μ3 = · · · = μn−1 if and

only if G ∼= Kn or G ∼= K1,n−1 or G ∼= K�,� .

Lemma 2.4. [13] Let x1, x2, . . . , xN be non-negative numbers, and let
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