

A note on the multiplicities of graph eigenvalues

Changjiang Bu*, Xu Zhang, Jiang Zhou

Dept. of Applied Mathematics, College of Science, Harbin Engineering University, Harbin 150001, PR China

ARTICLE INFO

Article history: Received 26 December 2012 Accepted 2 August 2013 Available online 30 August 2013 Submitted by R. Brualdi

MSC: 05C50

Keywords: Real symmetric matrix Adjacency matrix Star complement Eigenvalue multiplicity Pendant path

ABSTRACT

Let *G* be a graph with vertex set $\{1, ..., n\}$, and let *H* be the graph obtained by attaching one pendant path of length k_i at vertex i $(i = 1, ..., r, 1 \leq r \leq n)$. For a real symmetric matrix *A* whose graph is *H*, let $m_A(\mu)$ denote the multiplicity of an eigenvalue μ of *A*. From a result in da Fonseca (2005) [7], we know that $m_A(\mu) \leq n$. In this note, we characterize the case $m_A(\mu) = n$. We also give two upper bounds on eigenvalue multiplicity of trees and unicyclic graphs, which are generalizations of some results in Rowlinson (2010) [10].

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are simple undirected graphs. For a graph *G* with vertex set $V(G) = \{1, ..., n\}$, the adjacency matrix of *G* is the matrix $A = (a_{ij})$, where $a_{ij} = 1$ if there is an edge between vertices *i* and *j*, and 0 otherwise. The eigenvalues of *A* are called eigenvalues of *G*. If μ is an eigenvalue of *G* of multiplicity *k*, then a *star set* for μ in *G* is a subset *X* of V(G) such that |X| = k and the induced subgraph G - X does not have μ as an eigenvalue. The induced subgraph G - X is called a *star complement* for μ in *G*. It is known that star sets and star complements exist for any eigenvalue of any graph (see [5]). The research on star complements originated independently in papers by Ellingham [6] and Rowlinson [9]. The theory of star complement has been used to study graphs with least eigenvalue -2 [2,4], structure properties of strongly regular graphs [13,14] and the multiplicities of graph eigenvalues [1,10–12].

* Corresponding author. E-mail address: buchangjiang@hrbeu.edu.cn (C. Bu).

0024-3795/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.08.003 Let $A = (a_{ij})_{n \times n}$ be a real symmetric matrix. In [7,8], the graph of A, denoted by G(A), is defined as follows: the vertex set is $\{1, ..., n\}$ and i, j are adjacent if and only if $a_{ij} \neq 0$. If A is a (0, 1)-matrix with zero diagonal entries, then A is the adjacency matrix of G(A). For a graph G, let S(G) denote the set of all real symmetric matrices sharing a common graph G (see [7,8]).

A vertex of degree 1 is called a *pendant vertex*. We say that the path $u_0u_1 \cdots u_s$ is a *pendant path* of length *s* if $d(u_0) = 1$, $d(u_1) = \cdots = d(u_{s-1}) = 2$, where $d(u_i)$ is the degree of vertex u_i . Moreover, we say that the pendant path $u_0u_1 \cdots u_s$ is *proper* if $d(u_0) = 1$, $d(u_1) = \cdots = d(u_{s-1}) = 2$, $d(u_s) \neq 1$. Let C_n and P_n denote the cycle and the path of order *n*, respectively.

Let *G* be a graph with vertex set $\{1, ..., n\}$, and let *H* be the graph obtained by attaching one pendant path of length k_i at vertex *i* ($i = 1, ..., r, 1 \le r \le n$). For $A \in S(H)$, let $m_A(\mu)$ denote the multiplicity of an eigenvalue μ of *A*. From [7, Theorem 3.1] and [8, Corollary 2.3], we know that $m_A(\mu) \le n$. In this note, we characterize the case $m_A(\mu) = n$. We also obtain two upper bounds on eigenvalue multiplicity of trees and unicyclic graphs, which are generalizations of some results in [10].

2. Preliminaries

In order to obtain our main results, we give the following lemmas.

Lemma 2.1. (See [5].) Let X be a set of k vertices in graph G, and suppose that G has adjacency matrix $\begin{pmatrix} A & B^{-} \\ B & C \end{pmatrix}$, where A is the adjacency matrix of the subgraph induced by X. Then X is a star set for an eigenvalue μ of G if and only if μ is not an eigenvalue of C and

 $\mu I - A = B^{\top} (\mu I - C)^{-1} B.$

Lemma 2.2. (See [5].) Let μ be an eigenvalue of a connected graph *G*, and let *K* be a connected induced subgraph of *G* not having μ as an eigenvalue. Then *G* has a connected star complement for μ containing *K*.

Lemma 2.3. (See [10].) If u and v are adjacent vertices in a star set for G, then the edge uv is not a bridge of G.

Lemma 2.4. Let $f_0(\mu) = 1$, $f_1(\mu) = \mu$, $f_n(\mu) = \mu f_{n-1}(\mu) - f_{n-2}(\mu)$ (n = 2, 3, ...). Then $f_n(\mu) = 0$ $(n \ge 1)$ if and only if $\mu \in \{2 \cos \frac{k\pi}{n+1}; k = 1, ..., n\}$.

Proof. The Chebyshev polynomials of the second kind are defined by the recurrence relation $U_0(x) = 1$, $U_1(x) = 2x$, $U_n(x) = 2xU_{n-1}(x) - U_{n-2}(x)$. The roots of $U_n(x)$ are $\cos \frac{k\pi}{n+1}$ (k = 1, ..., n). Since $f_n(\mu) = U_n(\mu/2)$, we know that $f_n(\mu) = 0$ if and only if $\mu \in \{2 \cos \frac{k\pi}{n+1}; k = 1, ..., n\}$. \Box

Lemma 2.5. (See [7].) If $A \in S(P_n)$, then A has n distinct real eigenvalues.

3. Main results

Let $A = (a_{ij})_{n \times n}$ be a real symmetric matrix. For any eigenvalue μ of A, the *eigenspace* of μ is defined as $\mathcal{E}(\mu) = \{x \in \mathbb{R}^n : Ax = \mu x\}$. Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ denote the standard orthonormal basis, and let E_{μ} denote the matrix which represents the orthogonal projection of \mathbb{R}^n onto the eigenspace $\mathcal{E}(\mu)$ of A with respect to $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$. There always exists $X \subseteq \{1, \dots, n\}$ such that vectors $E_{\mu}\mathbf{e}_i$ $(i \in X)$ form a basis for $\mathcal{E}(\mu)$, such a set X is called a *star basis* for eigenvalue μ of A (see [3]). Clearly $|X| = \dim \mathcal{E}(\mu)$ is the multiplicity of μ . If A is a (0, 1)-matrix with zero diagonal entries, i.e., A is the adjacency matrix of a graph G, then X is a star basis for μ if and only if X is a star set for μ in G (see [5]). Since E_{μ} is a polynomial function of A, we have $\mu E_{\mu}\mathbf{e}_i = AE_{\mu}\mathbf{e}_i = E_{\mu}A\mathbf{e}_i = \sum_{j=1}^n a_{ji}E_{\mu}\mathbf{e}_j$. If $A \in S(G)$, then

$$(\mu - a_{ii})E_{\mu}\mathbf{e}_{i} = \sum_{j \sim i} a_{ji}E_{\mu}\mathbf{e}_{j},\tag{1}$$

where $j \sim i$ means that *i* and *j* are adjacent in graph *G*.

Download English Version:

https://daneshyari.com/en/article/4599813

Download Persian Version:

https://daneshyari.com/article/4599813

Daneshyari.com