# A note on the multiplicities of graph eigenvalues 

CrossMark

Changjiang Bu*, Xu Zhang, Jiang Zhou<br>Dept. of Applied Mathematics, College of Science, Harbin Engineering University, Harbin 150001, PR China

## A R T I C L E I N F O

## Article history:

Received 26 December 2012
Accepted 2 August 2013
Available online 30 August 2013
Submitted by R. Brualdi

## MSC:

05C50

Keywords:
Real symmetric matrix
Adjacency matrix
Star complement
Eigenvalue multiplicity
Pendant path


#### Abstract

Let $G$ be a graph with vertex set $\{1, \ldots, n\}$, and let $H$ be the graph obtained by attaching one pendant path of length $k_{i}$ at vertex $i(i=1, \ldots, r, 1 \leqslant r \leqslant n)$. For a real symmetric matrix $A$ whose graph is $H$, let $m_{A}(\mu)$ denote the multiplicity of an eigenvalue $\mu$ of $A$. From a result in da Fonseca (2005) [7], we know that $m_{A}(\mu) \leqslant n$. In this note, we characterize the case $m_{A}(\mu)=n$. We also give two upper bounds on eigenvalue multiplicity of trees and unicyclic graphs, which are generalizations of some results in Rowlinson (2010) [10].


© 2013 Elsevier Inc. All rights reserved.

## 1. Introduction

All graphs in this paper are simple undirected graphs. For a graph $G$ with vertex set $V(G)=$ $\{1, \ldots, n\}$, the adjacency matrix of $G$ is the matrix $A=\left(a_{i j}\right)$, where $a_{i j}=1$ if there is an edge between vertices $i$ and $j$, and 0 otherwise. The eigenvalues of $A$ are called eigenvalues of $G$. If $\mu$ is an eigenvalue of $G$ of multiplicity $k$, then a star set for $\mu$ in $G$ is a subset $X$ of $V(G)$ such that $|X|=k$ and the induced subgraph $G-X$ does not have $\mu$ as an eigenvalue. The induced subgraph $G-X$ is called a star complement for $\mu$ in $G$. It is known that star sets and star complements exist for any eigenvalue of any graph (see [5]). The research on star complements originated independently in papers by Ellingham [6] and Rowlinson [9]. The theory of star complement has been used to study graphs with least eigenvalue -2 [2,4], structure properties of strongly regular graphs [13,14] and the multiplicities of graph eigenvalues [1,10-12].

[^0]Let $A=\left(a_{i j}\right)_{n \times n}$ be a real symmetric matrix. In [7,8], the graph of $A$, denoted by $G(A)$, is defined as follows: the vertex set is $\{1, \ldots, n\}$ and $i, j$ are adjacent if and only if $a_{i j} \neq 0$. If $A$ is a $(0,1)$-matrix with zero diagonal entries, then $A$ is the adjacency matrix of $G(A)$. For a graph $G$, let $\mathcal{S}(G)$ denote the set of all real symmetric matrices sharing a common graph $G$ (see $[7,8]$ ).

A vertex of degree 1 is called a pendant vertex. We say that the path $u_{0} u_{1} \cdots u_{s}$ is a pendant path of length $s$ if $d\left(u_{0}\right)=1, d\left(u_{1}\right)=\cdots=d\left(u_{s-1}\right)=2$, where $d\left(u_{i}\right)$ is the degree of vertex $u_{i}$. Moreover, we say that the pendant path $u_{0} u_{1} \cdots u_{s}$ is proper if $d\left(u_{0}\right)=1, d\left(u_{1}\right)=\cdots=d\left(u_{s-1}\right)=2, d\left(u_{s}\right) \neq 1$. Let $C_{n}$ and $P_{n}$ denote the cycle and the path of order $n$, respectively.

Let $G$ be a graph with vertex set $\{1, \ldots, n\}$, and let $H$ be the graph obtained by attaching one pendant path of length $k_{i}$ at vertex $i(i=1, \ldots, r, 1 \leqslant r \leqslant n)$. For $A \in \mathcal{S}(H)$, let $m_{A}(\mu)$ denote the multiplicity of an eigenvalue $\mu$ of $A$. From [7, Theorem 3.1] and [8, Corollary 2.3], we know that $m_{A}(\mu) \leqslant n$. In this note, we characterize the case $m_{A}(\mu)=n$. We also obtain two upper bounds on eigenvalue multiplicity of trees and unicyclic graphs, which are generalizations of some results in [10].

## 2. Preliminaries

In order to obtain our main results, we give the following lemmas.
Lemma 2.1. (See [5].) Let $X$ be a set of $k$ vertices in graph $G$, and suppose that $G$ has adjacency matrix $\left(\begin{array}{cc}A & B^{\top} \\ B & C\end{array}\right)$, where $A$ is the adjacency matrix of the subgraph induced by $X$. Then $X$ is a star set for an eigenvalue $\mu$ of $G$ if and only if $\mu$ is not an eigenvalue of $C$ and

$$
\mu I-A=B^{\top}(\mu I-C)^{-1} B .
$$

Lemma 2.2. (See [5].) Let $\mu$ be an eigenvalue of a connected graph $G$, and let $K$ be a connected induced subgraph of $G$ not having $\mu$ as an eigenvalue. Then $G$ has a connected star complement for $\mu$ containing $K$.

Lemma 2.3. (See [10].) If $u$ and $v$ are adjacent vertices in a star set for $G$, then the edge $u v$ is not a bridge of $G$.
Lemma 2.4. Let $f_{0}(\mu)=1, f_{1}(\mu)=\mu, f_{n}(\mu)=\mu f_{n-1}(\mu)-f_{n-2}(\mu)(n=2,3, \ldots)$. Then $f_{n}(\mu)=0$ $(n \geqslant 1)$ if and only if $\mu \in\left\{2 \cos \frac{k \pi}{n+1} ; k=1, \ldots, n\right\}$.

Proof. The Chebyshev polynomials of the second kind are defined by the recurrence relation $U_{0}(x)=1, U_{1}(x)=2 x, U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x)$. The roots of $U_{n}(x)$ are $\cos \frac{k \pi}{n+1}(k=1, \ldots, n)$. Since $f_{n}(\mu)=U_{n}(\mu / 2)$, we know that $f_{n}(\mu)=0$ if and only if $\mu \in\left\{2 \cos \frac{k \pi}{n+1} ; k=1, \ldots, n\right\}$.

Lemma 2.5. (See [7].) If $A \in \mathcal{S}\left(P_{n}\right)$, then $A$ has $n$ distinct real eigenvalues.

## 3. Main results

Let $A=\left(a_{i j}\right)_{n \times n}$ be a real symmetric matrix. For any eigenvalue $\mu$ of $A$, the eigenspace of $\mu$ is defined as $\mathcal{E}(\mu)=\left\{x \in \mathbb{R}^{n}: A x=\mu x\right\}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ denote the standard orthonormal basis, and let $E_{\mu}$ denote the matrix which represents the orthogonal projection of $\mathbb{R}^{n}$ onto the eigenspace $\mathcal{E}(\mu)$ of $A$ with respect to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. There always exists $X \subseteq\{1, \ldots, n\}$ such that vectors $E_{\mu} \mathbf{e}_{i}(i \in X)$ form a basis for $\mathcal{E}(\mu)$, such a set $X$ is called a star basis for eigenvalue $\mu$ of $A$ (see [3]). Clearly $|X|=\operatorname{dim} \mathcal{E}(\mu)$ is the multiplicity of $\mu$. If $A$ is a ( 0,1 )-matrix with zero diagonal entries, i.e., $A$ is the adjacency matrix of a graph $G$, then $X$ is a star basis for $\mu$ if and only if $X$ is a star set for $\mu$ in $G$ (see [5]). Since $E_{\mu}$ is a polynomial function of $A$, we have $\mu E_{\mu} \mathbf{e}_{i}=A E_{\mu} \mathbf{e}_{i}=E_{\mu} A \mathbf{e}_{i}=\sum_{j=1}^{n} a_{j i} E_{\mu} \mathbf{e}_{j}$. If $A \in \mathcal{S}(G)$, then

$$
\begin{equation*}
\left(\mu-a_{i i}\right) E_{\mu} \mathbf{e}_{i}=\sum_{j \sim i} a_{j i} E_{\mu} \mathbf{e}_{j}, \tag{1}
\end{equation*}
$$

where $j \sim i$ means that $i$ and $j$ are adjacent in graph $G$.

# https://daneshyari.com/en/article/4599813 

Download Persian Version:
https://daneshyari.com/article/4599813

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail address: buchangjiang@hrbeu.edu.cn (C. Bu).

