

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

Star complements and connectivity in finite graphs

Peter Rowlinson*

Mathematics and Statistics Group, Institute of Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA, United Kingdom

ARTICLE INFO

Article history: Received 25 February 2013 Accepted 17 June 2013 Available online 16 July 2013 Submitted by R. Brualdi

MSC: 05C50

Keywords: Graph Connectivity Eigenvalue Star complement

ABSTRACT

Let G be a finite graph with H as a star complement for an eigenvalue other than 0 or -1. Let $\kappa(G)$, $\delta(G)$ denote respectively the vertex-connectivity and minimum degree of G. We prove that $\kappa(G)$ is controlled by $\delta(G)$ and $\kappa(H)$. In particular, for each $k \in \mathbb{N}$ there exists a smallest non-negative integer f(k) such that $\kappa(G) \geqslant k$ whenever $\kappa(H) \geqslant k$ and $\delta(G) \geqslant f(k)$. We show that f(1) = 0, f(2) = 2, f(3) = 3, f(4) = 5 and f(5) = 7.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite simple graph of order n with μ as an eigenvalue of multiplicity k. (Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0,1)-adjacency matrix A of G has dimension k.) A star set for μ in G is a subset X of the vertex-set V(G) such that |X|=k and the induced subgraph G-X does not have μ as an eigenvalue. In this situation, G-X is called a star complement for μ in G. We use the notation of [7], where the fundamental properties of star sets and star complements are established in Chapter 5.

It is well known that if $\mu \neq -1$ or 0 and n > 4 then $|X| \leq {n-k \choose 2}$ [1]; in particular, there are only finitely many graphs with a prescribed star complement H for some eigenvalue other than 0 or -1. Certain graphs can be characterised by a star complement: for surveys, see [9] and [11]. More generally, it is of interest to investigate properties of H that are reflected in G: connectedness is one

^{*} Tel.: +44 1786 467468; fax: +44 1786 464551. E-mail address: p.rowlinson@stirling.ac.uk.

such property, as noted in [8, Section 2]. Here we discuss k-connectedness for k > 1. In Section 2 we show that for each $k \in \mathbb{N}$ there exists a non-negative integer F(k) with the following property: if $\mu \notin \{-1,0\}$, H is k-connected and G has least degree $\delta(G) \geqslant F(k)$ then G is k-connected. It is straightforward to show that if f(k) is the smallest non-negative integer with this property, then f(1) = 0 and f(2) = 2. In Sections 3 and 4 we show that f(3) = 3, f(4) = 5, f(5) = 7 and $8 \leqslant f(6) \leqslant 20$.

We take $V(G) = \{1, ..., n\}$, and write $u \sim v$ to mean that vertices u and v are adjacent. For $S \subseteq V(G)$, we write G_S for the subgraph induced by S, and $\Delta_S(u)$ for the S-neighbourhood $\{v \in S: v \sim u\}$. For the subgraph H of G we write $\Delta_H(u)$ for $\Delta_{V(H)}(u)$. Let P be the matrix of the orthogonal projection of \mathbb{R}^n onto $\mathcal{E}(\mu)$ with respect to the standard orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ of \mathbb{R}^n .

We shall require the following properties of star sets and star complements; the first follows from [7, Proposition 5.1.1].

Lemma 1.1. The subset S of V(G) lies in a star set for μ if and only if the vectors $P\mathbf{e}_i$ $(i \in S)$ are linearly independent.

Since *P* is a polynomial in *A* [7, Eq. 1.5] we have $\mu P \mathbf{e}_i = AP \mathbf{e}_i = PA \mathbf{e}_i$ (i = 1, ..., n), whence:

Lemma 1.2.
$$\mu P \mathbf{e}_i = \sum_{i \sim i} P \mathbf{e}_i \ (i = 1, ..., n).$$

As a consequence of Lemmas 1.1 and 1.2 we have:

Lemma 1.3. (See [7, Proposition 5.1.4].) Let X be a star set for μ in G, and let H = G - X. If $\mu \notin \{-1, 0\}$, then V(H) is a location-dominating set in G, that is, the H-neighbourhoods $\Delta_H(u)$ ($u \in X$) are non-empty and distinct.

By interlacing [7, Corollary 1.3.12] we have:

Lemma 1.4. If S is a star set for μ in G and if U is a proper subset of S then $S \setminus U$ is a star set for μ in G - U.

The next result strengthens [1, Theorem 2.3], which says that if G has H as a star complement of order t, for an eigenvalue $\mu \notin \{-1,0\}$, then either (a) G has order at most $\binom{t+1}{2}$, or (b) $\mu=1$ and $G=K_2$ or $2K_2$.

Proposition 1.5. Let G be a graph with X as a star set for μ , and let H = G - X. Let $s = |\bigcup_{i \in X} \Delta_H(i)|$.

- (i) If |X| > s then G_X has μ as an eigenvalue of multiplicity at least |X| s.
- (ii) If $\mu \notin \{-1, 0\}$ then $|X| \leqslant {s+1 \choose 2}$.

Proof. Since $s \in {s+1 \choose 2}$, the second assertion is immediate when $|X| \le s$. Accordingly we assume throughout the proof that |X| > s. We show first that μ is an eigenvalue of G_X . Let $S = \bigcup_{i \in X} \Delta_H(i)$ and $X = \{1, 2, ..., k\}$. By Lemma 1.2, the vectors $\mu P \mathbf{e}_i - \Sigma \{P \mathbf{e}_j \colon j \in \Delta_X(i)\} \ (i \in X)$ lie in the subspace $\langle P \mathbf{e}_h \colon h \in S \rangle$, and so there exist $\alpha_1, \alpha_2, ..., \alpha_k$, not all zero, such that

$$\sum_{i=1}^{k} \alpha_i (\mu P \mathbf{e}_i - \Sigma \{ P \mathbf{e}_j \colon j \in \Delta_X(i) \}) = \mathbf{0}.$$

Since the vectors $P\mathbf{e}_i$ ($i \in X$) are linearly independent, it follows that $(\mu I - A_X)\mathbf{a} = \mathbf{0}$, where $\mathbf{a} = (\alpha_1, \alpha_2, \dots, \alpha_k)^{\top}$ and A_X is the adjacency matrix of G_X .

Let Y be a star set for μ in G_X and consider the graph G-Y. If |X|-|Y|>s then the above argument shows that μ is an eigenvalue of $G_{X\setminus Y}$. This is a contradiction because $G_{X\setminus Y}$ is a star complement for μ in G_X . Hence $|Y|\geqslant |X|-s$, and we have proved the first assertion.

Download English Version:

https://daneshyari.com/en/article/4599816

Download Persian Version:

https://daneshyari.com/article/4599816

<u>Daneshyari.com</u>