Note on the spectral radius of alternating sign matrices

Richard A. Brualdi ${ }^{\text {a,* }}$, Joshua Cooper ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States
${ }^{\text {b }}$ Department of Mathematics, University of South Carolina, Columbia, SC 29208, United States

A R T I C L E I N F O

Article history:

Received 4 March 2013
Accepted 4 August 2013
Available online 22 August 2013
Submitted by P. Semrl

MSC:

05B20
05C22
05 C 50
15B36

Keywords:
Alternating sign matrix
ASM
Spectral radius

A B S TRACT
 We show that the $n \times n$ so-called diamond alternating sign matrix D_{n} is the unique $n \times n$ alternating sign matrix with maximum spectral radius ρ_{n}, and that $\lim _{n \rightarrow \infty} \frac{\rho_{n}}{n}=\frac{2}{\pi}$.

© 2013 Elsevier Inc. All rights reserved.

An alternating sign matrix, abbreviated to ASM, is an $n \times n(0,+1,-1)$-matrix such that, ignoring 0 s , the +1 s and -1 s alternate in each row and column beginning and ending with a +1 . In particular, all row and column sums of an ASM equal 1. For example, the matrix

$$
\left[\begin{array}{rrrrr}
0 & 0 & 0 & +1 & 0 \tag{1}\\
+1 & 0 & 0 & -1 & +1 \\
0 & +1 & 0 & 0 & 0 \\
0 & 0 & 0 & +1 & 0 \\
0 & 0 & +1 & 0 & 0
\end{array}\right]
$$

[^0]is an ASM. Every permutation matrix is an ASM, and so ASMs can be thought of as generalizations of permutation matrices. A row and column permutation of an ASM, even a simultaneous row and column permutation, need not result in an ASM. For instance, the matrix obtained by interchanging rows 1 and 2 and columns 1 and 2 of the ASM in (1) is not an ASM. We refer the reader to [2] for the history of ASMs and to [1] for a recent combinatorial investigation of ASMs.

Let \mathcal{A}_{n} denote the set of all $n \times n$ ASMs. Let $\rho(X)$ denote the spectral radius of the $n \times n$ matrix X, that is, the maximum absolute value of an eigenvalue of X. Since all row and column sums of an ASM equal 1 , it follows that 1 is an eigenvalue of every ASM with corresponding eigenvector equal to a vector of all 1 s. Thus $\rho(A) \geqslant 1$ for every ASM; equality occurs for ASMs that are permutation matrices but may occur for other ASMs as well. For instance, let

$$
A=\left[\begin{array}{rrrrr}
0 & 0 & +1 & 0 & 0 \\
+1 & 0 & -1 & +1 & 0 \\
0 & 0 & +1 & -1 & +1 \\
0 & 0 & 0 & +1 & 0 \\
0 & +1 & 0 & 0 & 0
\end{array}\right]
$$

The characteristic polynomial of A is easily computed to be

$$
(\lambda-1)^{2}(\lambda+1)\left(\lambda^{2}-\lambda+1\right)
$$

and hence A has eigenvalues

$$
1,1,-1, \frac{1 \pm \sqrt{-3}}{2}
$$

all of which have absolute value equal to 1 . Therefore $\rho(A)=1$. This also follows from the fact that $A^{6}=I_{6}$ (in fact, all powers of A are $(0,+1,-1)$-matrices).

The purpose of this note is to determine the maximum spectral radius of an $n \times n$ ASM:

$$
\rho_{n}=\left\{\max \rho(A): A \in \mathcal{A}_{n}\right\} .
$$

Although every ASM different from a permutation matrix has at least one negative entry, we nonetheless are able to make use of the well-known Perron-Frobenius theory of nonnegative matrices, abbreviated to (PF), (see e.g. Chapter 8 of [3]). We also use the fact that for a square matrix B, $\rho\left(B^{2}\right)=\rho(B)^{2}$, and we make use of the following theorem (actually the technique of its proof) of Schwarz [4], which is a consequence of this theory.

Theorem 1. Let $c_{1}, c_{2}, \ldots, c_{n^{2}}$ be n^{2} nonnegative numbers. Let \mathcal{C}_{n} be the set of all $n \times n$ matrices whose entries are these n^{2} numbers in some order. Then the maximum spectral radius of a matrix in \mathcal{C}_{n} is attained by a matrix $A=\left[a_{i j}\right]$ in \mathcal{C}_{n} for which the entries in each row and in each column are nonincreasing:

$$
a_{i 1} \geqslant a_{i 2} \geqslant \cdots \geqslant a_{i n} \quad(1 \leqslant i \leqslant n), \quad \text { and } \quad a_{1 j} \geqslant a_{2 j} \geqslant \cdots \geqslant a_{n j} \quad(1 \leqslant j \leqslant n) .
$$

In replacing in Theorem 1 the maximum spectral radius with minimum spectral radius and nonincreasing with nondecreasing, an equally valid theorem results.

If X is an $n \times n$ real matrix, then we denote by $|X|$ the $n \times n$ nonnegative matrix obtained from X by replacing each entry with its absolute value. If A is an $n \times n$ ASM, then $|A|$ is a (0,1)-matrix. Counting the number of 1 s in each row of $|A|$ we get the row sum vector $R_{n}=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of $|A|$ where each r_{i} is necessarily odd. The alternating property of rows of an ASM implies that the $R_{n} \leqslant T_{n}$ entrywise where $T_{n}=(1,3,5, \ldots, 5,3,1)$. Similarly, we have a column sum vector S_{n} of $|A|$ with all odd components satisfying $S_{n} \leqslant T_{n}$ entrywise. The diamond ASM D_{n} is the $n \times n$ ASM for which the both the row sum vector and column sum vector equal T_{n}. If n is odd, D_{n} is unique. If n is even, there are two such matrices (we refer to both of them as diamond ASMs and denote them by D_{n}) each obtained from the other by reversing the order of the rows. For instance,

https://daneshyari.com/en/article/4599817

Download Persian Version:

https://daneshyari.com/article/4599817

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brualdi@math.wisc.edu (R.A. Brualdi), cooper@math.sc.edu (J. Cooper).

