

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Hermitian matrices with a bounded number of eigenvalues

pplications

M. Domokos¹

Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda utca 13-15, Hungary

ARTICLE INFO

Article history: Received 3 April 2013 Accepted 24 September 2013 Available online 29 October 2013 Submitted by P. Semrl

MSC: primary 13F20, 13A50, 14P05 secondary 15A15, 15A72, 20G05, 22E47

Keywords: Hermitian matrices Covariants Unitary group Subdiscriminants Real algebraic varieties

ABSTRACT

Conjugation covariants of matrices are applied to study the real algebraic variety consisting of complex Hermitian matrices with a bounded number of distinct eigenvalues. A minimal generating system of the vanishing ideal of degenerate three by three Hermitian matrices is given, and the structure of the corresponding coordinate ring as a module over the special unitary group is determined. The method applies also for degenerate real symmetric three by three matrices. For arbitrary *n* partial information on the minimal degree component of the vanishing ideal of the variety of $n \times n$ Hermitian matrices with a bounded number of eigenvalues is obtained, and some known results on sum of squares presentations of subdiscriminants of real symmetric matrices are extended to the case of complex Hermitian matrices.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F} be the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. For a matrix $A \in \mathbb{C}^{n \times n}$ denote \overline{A} and A^T the complex conjugate and transpose of A, respectively. Fix a positive integer $n \ge 2$, and let \mathcal{M} be one of the following \mathbb{F} -subspaces of $\mathbb{C}^{n \times n}$:

(a) the Hermitian matrices $\operatorname{Her}(n) = \{A \in \mathbb{C}^{n \times n} \mid \overline{A} = A^T\};$

- (b) the real symmetric matrices $\text{Sym}(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid A^T = A\};$
- (c) all $n \times n$ complex matrices $\mathbb{C}^{n \times n}$;
- (d) the complex symmetric matrices $\text{Sym}(n, \mathbb{C}) = \{A \in \mathbb{C}^{n \times n} \mid A^T = A\}.$

E-mail address: domokos.matyas@renyi.mta.hu.

¹ Partially supported by OTKA NK81203 and K101515.

^{0024-3795/\$ –} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.09.040

For k = 0, 1, ..., n - 1 consider the following subset of \mathcal{M} :

$$\mathcal{M}_k := \left\{ A \in \mathcal{M} \mid \deg(m_A) \leqslant n - k \right\}$$

where m_A stands for the minimal polynomial of the matrix A. Clearly $\mathcal{M}_0 = \mathcal{M}$, $\mathcal{M}_k \supset \mathcal{M}_{k+1}$, and for a fixed $k \in \{0, 1, ..., n-1\}$ we have the inclusions

We have also the equalities $\operatorname{Her}(n)_k = (\mathbb{C}^{n \times n})_k \cap \operatorname{Her}(n)$ and $\operatorname{Sym}(n, \mathbb{R})_k = \operatorname{Sym}(n, \mathbb{C})_k \cap \operatorname{Sym}(n, \mathbb{R}) = \operatorname{Her}(n)_k \cap \mathbb{R}^{n \times n}$. Obviously \mathcal{M}_k is the common zero locus in \mathcal{M} of the coordinate functions of the polynomial map

$$\mathcal{P}_k: \mathcal{M} \to \bigwedge^{n-k+1} \mathcal{M}, \quad A \mapsto I_n \wedge A \wedge A^2 \wedge \cdots \wedge A^{n-k}$$

where I_n is the $n \times n$ identity matrix and $\bigwedge^l \mathcal{M}$ is the *l*th exterior power of \mathcal{M} . In particular, \mathcal{M}_k is an affine algebraic subvariety of the affine space \mathcal{M} , and it is natural to raise the following question:

Question 1.1. Do the coordinate functions of the polynomial map \mathcal{P}_k generate the vanishing ideal $\mathcal{I}(\mathcal{M}_k)$ in $\mathbb{F}[\mathcal{M}]$ of the affine algebraic subvariety $\mathcal{M}_k \subset \mathcal{M}$?

Above $\mathbb{F}[\mathcal{M}]$ is the coordinate ring of \mathcal{M} , so $\mathbb{F} = \mathbb{R}$ in cases (a), (b) whereas $\mathbb{F} = \mathbb{C}$ in cases (c), (d), and $\mathbb{F}[\mathcal{M}]$ is a polynomial ring over \mathbb{F} in dim_{\mathbb{F}}(\mathcal{M}) variables. Recall that the *vanishing ideal* of \mathcal{M}_k is

$$\mathcal{I}(\mathcal{M}_k) := \left\{ f \in \mathbb{F}[\mathcal{M}] \mid f|_{\mathcal{M}_k} \equiv \mathbf{0} \right\} \triangleleft \mathbb{F}[\mathcal{M}]$$

We have $\mathcal{M}_0 = \mathcal{M}$, so $\mathcal{I}(\mathcal{M}_0)$ is the zero ideal, and \mathcal{P}_0 is the zero map. From now on we focus on \mathcal{M}_{k+1} and $\mathcal{I}(\mathcal{M}_{k+1})$ where k = 0, 1, ..., n-2.

Our original interest was in the real cases (a) and (b): then $\mathbb{F} = \mathbb{R}$ and all $A \in \mathcal{M}$ are diagonalizable with real eigenvalues, hence

$$\mathcal{M}_{k+1} = \{A \in \mathcal{M} \mid A \text{ has at most } n - k - 1 \text{ distinct eigenvalues}\}$$
(1)

It follows from (1) that in the real cases \mathcal{M}_{k+1} (for k = 0, 1, ..., n-2) is the zero locus of a single polynomial sDisc_k $\in \mathbb{R}[\mathcal{M}]$, defined by

$$sDisc_k(A) := \sum_{1 \leq i_1 < \dots < i_{n-k} \leq n} \prod_{1 \leq s < t \leq n-k} (\lambda_{i_s} - \lambda_{i_t})^2$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of *A*. Note that $\text{sDisc}_k(A)$ coincides with the *k*-subdiscriminant of the characteristic polynomial of *A* (we refer to Chapter 4 of [1] for basic properties of subdiscriminants), and sDisc_k is a homogeneous polynomial function on \mathcal{M} of degree (n - k)(n - k - 1). In the special case k = 0 we recover the *discriminant* Disc = sDisc_0 . The ideal $\mathcal{I}(\mathcal{M}_{k+1})$ is generated by homogeneous elements (with respect to the standard grading on the polynomial ring $\mathbb{F}[\mathcal{M}] = \bigoplus_{d=0}^{\infty} \mathbb{F}[\mathcal{M}]_d$). In [6] it was deduced from the Kleitman–Lovász theorem (cf. Theorem 2.4 in [18]) that $\frac{1}{2} \deg(\text{sDisc}_k) = \binom{n-k}{2}$ is the minimal degree of a non-zero homogeneous component of $\mathcal{I}(\mathcal{M}_{k+1}) = \bigoplus_{d=0}^{\infty} \mathcal{I}(\mathcal{M}_k)_d$ (in fact [6] deals with the case $\mathcal{M} = \text{Sym}(n, \mathbb{R})$ only, but the proof of Corollary 5.3 in [6] works also for the case $\mathcal{M} = \text{Her}(n)$, see Proposition 7.2 and Theorem 8.1 (i) in the present paper). Since the polynomial map \mathcal{P}_{k+1} is homogeneous of degree $\binom{n-k}{2}$, its coordinate functions are contained in the homogeneous component $\mathcal{I}(\mathcal{M}_{k+1})_{\binom{n-k}{2}}$. So an affirmative answer to Question 1.1 would imply in particular that $\mathcal{I}(\mathcal{M}_{k+1})$ is generated by its minimal degree non-zero homogeneous component. Download English Version:

https://daneshyari.com/en/article/4599846

Download Persian Version:

https://daneshyari.com/article/4599846

Daneshyari.com