
Linear Algebra and its Applications 439 (2013) 3964–3979

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Hermitian matrices with a bounded number
of eigenvalues

M. Domokos 1

Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest,
Reáltanoda utca 13-15, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 April 2013
Accepted 24 September 2013
Available online 29 October 2013
Submitted by P. Semrl

MSC:
primary 13F20, 13A50, 14P05
secondary 15A15, 15A72, 20G05, 22E47

Keywords:
Hermitian matrices
Covariants
Unitary group
Subdiscriminants
Real algebraic varieties

Conjugation covariants of matrices are applied to study the real
algebraic variety consisting of complex Hermitian matrices with
a bounded number of distinct eigenvalues. A minimal generat-
ing system of the vanishing ideal of degenerate three by three
Hermitian matrices is given, and the structure of the corresponding
coordinate ring as a module over the special unitary group is de-
termined. The method applies also for degenerate real symmetric
three by three matrices. For arbitrary n partial information on the
minimal degree component of the vanishing ideal of the variety of
n ×n Hermitian matrices with a bounded number of eigenvalues is
obtained, and some known results on sum of squares presentations
of subdiscriminants of real symmetric matrices are extended to the
case of complex Hermitian matrices.
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1. Introduction

Let F be the field R of real numbers or the field C of complex numbers. For a matrix A ∈ C
n×n

denote Ā and AT the complex conjugate and transpose of A, respectively. Fix a positive integer n � 2,
and let M be one of the following F-subspaces of Cn×n:

(a) the Hermitian matrices Her(n) = {A ∈C
n×n | Ā = AT };

(b) the real symmetric matrices Sym(n,R) = {A ∈R
n×n | AT = A};

(c) all n × n complex matrices C
n×n;

(d) the complex symmetric matrices Sym(n,C) = {A ∈ C
n×n | AT = A}.
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For k = 0,1, . . . ,n − 1 consider the following subset of M:

Mk := {
A ∈ M

∣∣ deg(mA) � n − k
}

where mA stands for the minimal polynomial of the matrix A. Clearly M0 = M, Mk ⊃ Mk+1, and
for a fixed k ∈ {0,1, . . . ,n − 1} we have the inclusions

(Cn×n)k ⊃ Her(n)k
∪ ∪

Sym(n,C)k ⊃ Sym(n,R)k

We have also the equalities Her(n)k = (Cn×n)k ∩ Her(n) and Sym(n,R)k = Sym(n,C)k ∩ Sym(n,R) =
Her(n)k ∩ R

n×n . Obviously Mk is the common zero locus in M of the coordinate functions of the
polynomial map

Pk : M →
n−k+1∧

M, A �→ In ∧ A ∧ A2 ∧ · · · ∧ An−k

where In is the n × n identity matrix and
∧l M is the lth exterior power of M. In particular, Mk is

an affine algebraic subvariety of the affine space M, and it is natural to raise the following question:

Question 1.1. Do the coordinate functions of the polynomial map Pk generate the vanishing ideal I(Mk) in
F[M] of the affine algebraic subvariety Mk ⊂M?

Above F[M] is the coordinate ring of M, so F =R in cases (a), (b) whereas F= C in cases (c), (d),
and F[M] is a polynomial ring over F in dimF(M) variables. Recall that the vanishing ideal of Mk is

I(Mk) := {
f ∈ F[M] ∣∣ f |Mk ≡ 0

} � F[M]
We have M0 = M, so I(M0) is the zero ideal, and P0 is the zero map. From now on we focus on
Mk+1 and I(Mk+1) where k = 0,1, . . . ,n − 2.

Our original interest was in the real cases (a) and (b): then F =R and all A ∈M are diagonalizable
with real eigenvalues, hence

Mk+1 = {A ∈ M | A has at most n − k − 1 distinct eigenvalues} (1)

It follows from (1) that in the real cases Mk+1 (for k = 0,1, . . . ,n − 2) is the zero locus of a single
polynomial sDisck ∈R[M], defined by

sDisck(A) :=
∑

1�i1<···<in−k�n

∏
1�s<t�n−k

(λis − λit )
2

where λ1, . . . , λn are the eigenvalues of A. Note that sDisck(A) coincides with the k-subdiscriminant
of the characteristic polynomial of A (we refer to Chapter 4 of [1] for basic properties of subdis-
criminants), and sDisck is a homogeneous polynomial function on M of degree (n − k)(n − k − 1).
In the special case k = 0 we recover the discriminant Disc = sDisc0. The ideal I(Mk+1) is gen-
erated by homogeneous elements (with respect to the standard grading on the polynomial ring
F[M] = ⊕∞

d=0 F[M]d). In [6] it was deduced from the Kleitman–Lovász theorem (cf. Theorem 2.4

in [18]) that 1
2 deg(sDisck) = (n−k

2

)
is the minimal degree of a non-zero homogeneous component of

I(Mk+1) = ⊕∞
d=0 I(Mk)d (in fact [6] deals with the case M = Sym(n,R) only, but the proof of

Corollary 5.3 in [6] works also for the case M = Her(n), see Proposition 7.2 and Theorem 8.1 (i) in
the present paper). Since the polynomial map Pk+1 is homogeneous of degree

(n−k
2

)
, its coordinate

functions are contained in the homogeneous component I(Mk+1)(n−k
2

) . So an affirmative answer to

Question 1.1 would imply in particular that I(Mk+1) is generated by its minimal degree non-zero
homogeneous component.
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