Hermitian matrices with a bounded number of eigenvalues

M. Domokos ${ }^{1}$
Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda utca 13-15, Hungary

ARTICLE INFO

Article history:

Received 3 April 2013
Accepted 24 September 2013
Available online 29 October 2013
Submitted by P. Semrl

MSC:

primary 13F20, 13A50, 14P05
secondary 15A15, 15A72, 20G05, 22E47

Keywords:

Hermitian matrices
Covariants
Unitary group
Subdiscriminants
Real algebraic varieties

Abstract

Conjugation covariants of matrices are applied to study the real algebraic variety consisting of complex Hermitian matrices with a bounded number of distinct eigenvalues. A minimal generating system of the vanishing ideal of degenerate three by three Hermitian matrices is given, and the structure of the corresponding coordinate ring as a module over the special unitary group is determined. The method applies also for degenerate real symmetric three by three matrices. For arbitrary n partial information on the minimal degree component of the vanishing ideal of the variety of $n \times n$ Hermitian matrices with a bounded number of eigenvalues is obtained, and some known results on sum of squares presentations of subdiscriminants of real symmetric matrices are extended to the case of complex Hermitian matrices.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F} be the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. For a matrix $A \in \mathbb{C}^{n \times n}$ denote \bar{A} and A^{T} the complex conjugate and transpose of A, respectively. Fix a positive integer $n \geqslant 2$, and let \mathcal{M} be one of the following \mathbb{F}-subspaces of $\mathbb{C}^{n \times n}$:
(a) the Hermitian matrices $\operatorname{Her}(n)=\left\{A \in \mathbb{C}^{n \times n} \mid \bar{A}=A^{T}\right\}$;
(b) the real symmetric matrices $\operatorname{Sym}(n, \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid A^{T}=A\right\}$;
(c) all $n \times n$ complex matrices $\mathbb{C}^{n \times n}$;
(d) the complex symmetric matrices $\operatorname{Sym}(n, \mathbb{C})=\left\{A \in \mathbb{C}^{n \times n} \mid A^{T}=A\right\}$.

[^0]For $k=0,1, \ldots, n-1$ consider the following subset of \mathcal{M} :

$$
\mathcal{M}_{k}:=\left\{A \in \mathcal{M} \mid \operatorname{deg}\left(m_{A}\right) \leqslant n-k\right\}
$$

where m_{A} stands for the minimal polynomial of the matrix A. Clearly $\mathcal{M}_{0}=\mathcal{M}, \mathcal{M}_{k} \supset \mathcal{M}_{k+1}$, and for a fixed $k \in\{0,1, \ldots, n-1\}$ we have the inclusions

$$
\begin{array}{ccc}
\left(\mathbb{C}^{n \times n}\right)_{k} & \supset & \operatorname{Her}(n)_{k} \\
\cup & & \cup \\
\operatorname{Sym}(n, \mathbb{C})_{k} & \supset & \operatorname{Sym}(n, \mathbb{R})_{k}
\end{array}
$$

We have also the equalities $\operatorname{Her}(n)_{k}=\left(\mathbb{C}^{n \times n}\right)_{k} \cap \operatorname{Her}(n)$ and $\operatorname{Sym}(n, \mathbb{R})_{k}=\operatorname{Sym}(n, \mathbb{C})_{k} \cap \operatorname{Sym}(n, \mathbb{R})=$ $\operatorname{Her}(n)_{k} \cap \mathbb{R}^{n \times n}$. Obviously \mathcal{M}_{k} is the common zero locus in \mathcal{M} of the coordinate functions of the polynomial map

$$
\mathcal{P}_{k}: \mathcal{M} \rightarrow \bigwedge^{n-k+1} \mathcal{M}, \quad A \mapsto I_{n} \wedge A \wedge A^{2} \wedge \cdots \wedge A^{n-k}
$$

where I_{n} is the $n \times n$ identity matrix and $\bigwedge^{l} \mathcal{M}$ is the l th exterior power of \mathcal{M}. In particular, \mathcal{M}_{k} is an affine algebraic subvariety of the affine space \mathcal{M}, and it is natural to raise the following question:

Question 1.1. Do the coordinate functions of the polynomial map \mathcal{P}_{k} generate the vanishing ideal $\mathcal{I}\left(\mathcal{M}_{k}\right)$ in $\mathbb{F}[\mathcal{M}]$ of the affine algebraic subvariety $\mathcal{M}_{k} \subset \mathcal{M}$?

Above $\mathbb{F}[\mathcal{M}]$ is the coordinate ring of \mathcal{M}, so $\mathbb{F}=\mathbb{R}$ in cases (a), (b) whereas $\mathbb{F}=\mathbb{C}$ in cases (c), (d), and $\mathbb{F}[\mathcal{M}]$ is a polynomial ring over \mathbb{F} in $\operatorname{dim}_{\mathbb{F}}(\mathcal{M})$ variables. Recall that the vanishing ideal of \mathcal{M}_{k} is

$$
\mathcal{I}\left(\mathcal{M}_{k}\right):=\left\{f \in \mathbb{F}[\mathcal{M}]|f|_{\mathcal{M}_{k}} \equiv 0\right\} \triangleleft \mathbb{F}[\mathcal{M}]
$$

We have $\mathcal{M}_{0}=\mathcal{M}$, so $\mathcal{I}\left(\mathcal{M}_{0}\right)$ is the zero ideal, and \mathcal{P}_{0} is the zero map. From now on we focus on \mathcal{M}_{k+1} and $\mathcal{I}\left(\mathcal{M}_{k+1}\right)$ where $k=0,1, \ldots, n-2$.

Our original interest was in the real cases (a) and (b): then $\mathbb{F}=\mathbb{R}$ and all $A \in \mathcal{M}$ are diagonalizable with real eigenvalues, hence

$$
\begin{equation*}
\mathcal{M}_{k+1}=\{A \in \mathcal{M} \mid A \text { has at most } n-k-1 \text { distinct eigenvalues }\} \tag{1}
\end{equation*}
$$

It follows from (1) that in the real cases \mathcal{M}_{k+1} (for $k=0,1, \ldots, n-2$) is the zero locus of a single polynomial $\mathrm{sDisc}{ }_{k} \in \mathbb{R}[\mathcal{M}]$, defined by

$$
\operatorname{sDisc}_{k}(A):=\sum_{1 \leqslant i_{1}<\cdots<i_{n-k} \leqslant n} \prod_{1 \leqslant s<t \leqslant n-k}\left(\lambda_{i_{s}}-\lambda_{i_{t}}\right)^{2}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A. Note that $\operatorname{sDisc}_{k}(A)$ coincides with the k-subdiscriminant of the characteristic polynomial of A (we refer to Chapter 4 of [1] for basic properties of subdiscriminants), and $s \operatorname{Sisc}_{k}$ is a homogeneous polynomial function on \mathcal{M} of degree $(n-k)(n-k-1)$. In the special case $k=0$ we recover the discriminant $\operatorname{Disc}=\operatorname{sDisc}_{0}$. The ideal $\mathcal{I}\left(\mathcal{M}_{k+1}\right)$ is generated by homogeneous elements (with respect to the standard grading on the polynomial ring $\mathbb{F}[\mathcal{M}]=\bigoplus_{d=0}^{\infty} \mathbb{F}[\mathcal{M}]_{d}$). In [6] it was deduced from the Kleitman-Lovász theorem (cf. Theorem 2.4 in [18]) that $\frac{1}{2} \operatorname{deg}\left(\operatorname{SDisc}_{k}\right)=\binom{n-k}{2}$ is the minimal degree of a non-zero homogeneous component of $\mathcal{I}\left(\mathcal{M}_{k+1}\right)=\bigoplus_{d=0}^{\infty} \mathcal{I}\left(\mathcal{M}_{k}\right)_{d}$ (in fact [6] deals with the case $\mathcal{M}=\operatorname{Sym}(n, \mathbb{R})$ only, but the proof of Corollary 5.3 in [6] works also for the case $\mathcal{M}=\operatorname{Her}(n)$, see Proposition 7.2 and Theorem 8.1 (i) in the present paper). Since the polynomial map \mathcal{P}_{k+1} is homogeneous of degree $\binom{n-k}{2}$, its coordinate functions are contained in the homogeneous component $\mathcal{I}\left(\mathcal{M}_{k+1}\right)_{\binom{n-k}{2}}$. So an affirmative answer to Question 1.1 would imply in particular that $\mathcal{I}\left(\mathcal{M}_{k+1}\right)$ is generated by its minimal degree non-zero homogeneous component.

https://daneshyari.com/en/article/4599846

Download Persian Version:

https://daneshyari.com/article/4599846

Daneshyari.com

[^0]: E-mail address: domokos.matyas@renyi.mta.hu.
 1 Partially supported by OTKA NK81203 and K101515.

