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Conjugation covariants of matrices are applied to study the real
algebraic variety consisting of complex Hermitian matrices with
a bounded number of distinct eigenvalues. A minimal generat-
ing system of the vanishing ideal of degenerate three by three
Hermitian matrices is given, and the structure of the corresponding
coordinate ring as a module over the special unitary group is de-
termined. The method applies also for degenerate real symmetric
three by three matrices. For arbitrary n partial information on the
minimal degree component of the vanishing ideal of the variety of
n x n Hermitian matrices with a bounded number of eigenvalues is
obtained, and some known results on sum of squares presentations
of subdiscriminants of real symmetric matrices are extended to the
case of complex Hermitian matrices.
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1. Introduction

Let I be the field R of real numbers or the field C of complex numbers. For a matrix A € C"™"
denote A and AT the complex conjugate and transpose of A, respectively. Fix a positive integer n > 2,
and let M be one of the following F-subspaces of C"*":

the Hermitian matrices Her(n) = {A e C"™" | A = AT};

()
(b) the real symmetric matrices Sym(n, R) = {A € R™" | AT = A};
(c)

)
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For k=0,1,...,n—1 consider the following subset of M:

My :={A e M |deg(my) <n—k}

where m, stands for the minimal polynomial of the matrix A. Clearly My =M, My > Mj41, and
for a fixed k € {0,1,...,n — 1} we have the inclusions

(C™™y, D Her(n)
U U
Sym(n, C)x D Sym(n, R),

We have also the equalities Her(n), = (C"*™), N Her(n) and Sym(n, R);, = Sym(n, C), N Sym(n, R) =
Her(n), N R™™M, Obviously M is the common zero locus in M of the coordinate functions of the
polynomial map

n—k+1
Pe: M — /\ M, A>T AAANAZA - AATK

where I, is the n x n identity matrix and /\l M is the Ith exterior power of M. In particular, My is
an affine algebraic subvariety of the affine space M, and it is natural to raise the following question:

Question 1.1. Do the coordinate functions of the polynomial map P generate the vanishing ideal Z(My) in
F[M] of the affine algebraic subvariety My C M?

Above F[M] is the coordinate ring of M, so F =R in cases (a), (b) whereas IF = C in cases (c), (d),
and F[M] is a polynomial ring over F in dimp(M) variables. Recall that the vanishing ideal of Mj, is

I(My) == {f e FIM] | fIam, =0} <F[M]

We have Mg =M, so Z(My) is the zero ideal, and Py is the zero map. From now on we focus on
M1 and Z(Myy1) where k=0,1,...,n—2.

Our original interest was in the real cases (a) and (b): then F =R and all A € M are diagonalizable
with real eigenvalues, hence

Myi1 ={A € M| Ahasat mostn —k — 1 distinct eigenvalues} (1)

It follows from (1) that in the real cases M1 (for k=0,1,...,n — 2) is the zero locus of a single
polynomial sDisc, € R[M], defined by

sDisr(A):= Y [T Gui—2?

1<i < <ip_<n 1<s<t<n—k

where Aq,..., A, are the eigenvalues of A. Note that sDiscy(A) coincides with the k-subdiscriminant
of the characteristic polynomial of A (we refer to Chapter 4 of [1] for basic properties of subdis-
criminants), and sDisc, is a homogeneous polynomial function on M of degree (n — k)(n — k — 1).
In the special case k =0 we recover the discriminant Disc = sDisco. The ideal Z(Mj41) is gen-
erated by homogeneous elements (with respect to the standard grading on the polynomial ring
FIM] = D32, FlM]q). In [6] it was deduced from the Kleitman-Lovasz theorem (cf. Theorem 2.4
in [18]) that %deg(sDisck) = (";k) is the minimal degree of a non-zero homogeneous component of
T(Myps1) = BgoZ(My)g (in fact [6] deals with the case M = Sym(n,R) only, but the proof of
Corollary 5.3 in [6] works also for the case M = Her(n), see Proposition 7.2 and Theorem 8.1 (i) in
the present paper). Since the polynomial map Py, is homogeneous of degree (";k), its coordinate
functions are contained in the homogeneous component I(Mk+1)(n;k). So an affirmative answer to

Question 1.1 would imply in particular that Z(Mjy,1) is generated by its minimal degree non-zero
homogeneous component.
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