
The Journal of Systems and Software 83 (2010) 2591–2606

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Domain-specific language modelling with UML profiles by decoupling abstract
and concrete syntaxes

Jesús Pardillo ∗, Cristina Cachero
Department of Software and Computing Systems, University of Alicante, P.O. Box 99, E-03080, Spain

a r t i c l e i n f o

Article history:
Received 15 December 2009
Received in revised form 11 August 2010
Accepted 11 August 2010
Available online 19 August 2010

UML
Diagramming
Modelling
Profiles
Syntax
Visual languages

a b s t r a c t

UML profiling presents some acknowledged deficiencies, among which the lack of expressiveness of the
profiled notations, together with the high coupling between abstract and concrete syntaxes outstand.
These deficiencies may cause distress among UML-profile modellers, who are often forced to extend
from unsuitable metaclasses for mere notational reasons, or even to model domain-specific languages
from scratch just to avoid the UML-profiling limitations.

In order to palliate this situation, this article presents an extension of the UML profile metamodel to
support arbitrarily-complex notational extensions by decoupling the UML abstract and concrete syn-
tax. Instead of defining yet another metamodel for UML-notational profiling, notational extensions are
modelled with DI, i.e., the UML notation metamodel for diagram interchange, keeping in this way the
extension within the standard. Profiled UML notations are rendered with DI by defining the graphical
properties involved, the domain-specific constraints applied to DI, and the rendering routines associ-
ated. Decoupling abstract and concrete syntax in UML profiles increases the notation expressiveness
while decreasing the abstract-syntax complexity.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

UML profiling (Object Management Group, 2009) is a straight-
forward technique to extend UML. UML profiles allow modellers to
adapt UML to fit the representational needs of particular domains.
For this purpose, they define stereotypes (Wirfs-Brock et al., 1994)
that, applied over the UML metaclasses, redefine their notation,
syntax and semantics (Berner et al., 1999). Therefore, the core
extension concept is the (meta-) metaclass Stereotype.1 This
metaclass specialises the metaclass Class, to which it adds Prop-
erties (called tagged definitions) and Constraints (by means of
the Namespace::ownedRule property), which are usually defined
in OCL (Object Management Group, 2006a). Stereotypes are related
with the corresponding metaclasses by means of Extensions
(Object Management Group, 2009).

UML profiles also support notational extensions through arbi-
trary Icons associated to Stereotypes. These Icons decorate the
notation of extended metaclasses, increasing diagram comprehen-
sibility (Staron et al., 2006). The ulterior representation of these
icons is managed by modelling tools according to a set of prede-

∗ Corresponding author. Tel.: +34 965 90 3400x2075; fax: +34 965 90 9326.
E-mail addresses: jesuspv@ua.es, jesuspv@dlsi.ua.es (J. Pardillo),

ccachero@dlsi.ua.es (C. Cachero).
1 The reason why Stereotypes can be considered meta-metaclasses is that they

are defined over UML metaclasses.

fined rules, defined by UML (Object Management Group, 2009) (p.
674): e.g., Classes, which are diagrammatically represented by
a box containing various compartments, can be represented by a
mere icon iff a single stereotype is applied to the class and class
properties are hidden.

Moreover, stereotypes have a certain meaning associated.
Unfortunately, UML does not properly formalise (in the mathe-
matical sense) many of its metaclass semantics (Kong et al., 2009;
Opdahl and Henderson-Sellers, 2002). Therefore, the stereotypes
semantics is usually expressed (like the UML semantics itself) as an
informal description in natural language.

Depending both on their base metaclass and their complex-
ity, stereotypes can be classified into: decorative (concrete-syntax2

extension), descriptive (abstract-syntax extension), restrictive
(descriptive with syntactic constraints) and redefining (removal
of the original UML syntax) (Berner et al., 1999). Some authors
refer to the UML profiles that only contain decorative, descrip-
tive or restrictive stereotypes as conservative extensions of UML,
while UML profiles that contain redefining stereotypes are called
non-conservative extensions (Turski and Maibaum, 1987). This dis-
tinction is important because only conservative extensions are
‘safe’, in the sense that they avoid undesired side-effects in UML

2 Concrete syntax and notation are herein used as synonyms. The notions of both
concrete and abstract syntax are defined in Appendix A.

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.08.019

dx.doi.org/10.1016/j.jss.2010.08.019
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:jesuspv@ua.es
mailto:jesuspv@dlsi.ua.es
mailto:ccachero@dlsi.ua.es
dx.doi.org/10.1016/j.jss.2010.08.019


2592 J. Pardillo, C. Cachero / The Journal of Systems and Software 83 (2010) 2591–2606

models. The reason is that conservative extensions abide by a vari-
ant of the Liskov’s substitution principle (Liskov, 1987), which makes
possible to substitute an instance of a stereotyped metaclass by
an instance of the extended metaclass without incurring in syn-
tactic inconsistencies (although, of course, with this substitution
we may incur in a expressiveness loss). This means that modellers
should try to come up with conservative extensions whenever
possible. Unfortunately, in the last years we have witnessed how
many of the myriad of UML profiles proposed in literature are
still non-conservative. This situation is often due to the fact that
mere notational reasons lie behind the selection of many extended
metaclasses in existing UML profiles (Section 2). Choosing base
metaclasses for notational reasons also often provokes the unnec-
essarily complex redefinition of UML elements in order to support
the domain-specific syntax.

This article dives into this situation and argues that both this
complexity and the problems caused by non-conservative profiles
could be alleviated if UML decreased the coupling between pro-
filed concrete and abstract syntaxes. This decoupling would allow
designers to extend from metaclasses whose abstract syntax is
closer to the concept represented by the stereotype, without being
forced to also use its notation. In other words, modellers should not
be forced to extend from a given metaclass in order to be able to
use its notation.

Going one step further, whenever it is possible to find (a) closer
matches between representation and representee notations or (b)
aesthetically more pleasant representations than the ones provided
by the general-purpose UML notation, modellers should not be
forced to stick by the UML notation, since appropriate notations
foster a more effective diagrammatic communication (Green and
Petre, 1996).

Many modelling tools, being aware of this fact, have already
incorporated their own alternatives to the UML ‘icon-based exten-
sion rules’ (Object Management Group, 2009) (p. 674). For example,
tools like the award-winning MagicDraw3 allow to enrich the nota-
tion of UML Associations with additional properties, such as end
shapes, colour, and thickness, to cite a few. The decoupling between
abstract and concrete syntax in UML profiles would make these ‘ad-
hoc’ solutions unnecessary. Otherwise stated, UML would benefit
from allowing for a standard way to enrich notations independently
from abstract syntax or semantics.

This article is organised as follows. Next section (Section 2)
dives into the problems that derive from the high coupling between
abstract and concrete syntaxes in UML profiles. In particular, Sec-
tion 3 reviews the case of UML profiling for the data-warehousing
domain. These problems are further discussed by means of an
ER modelling running example (Section 4). Section 5 outlines the
foundations behind the UML notation, namely the DI metamodel.
Section 6 presents how it is possible to solve some common pro-
filing problems by using this DI metamodel, and illustrates the
approach by applying the proposed solution to the aforementioned
ER running example. Section 7 completes the approach with a pro-
totype implementation that shows how a DI-based UML profiling
tool may work in practice. Last, Section 8 discusses the presented
solution and its implications for UML profiling.

2. Abstract and concrete syntax coupling in UML profiles

During the definition of UML profiles, modellers need to make
decisions on the ideal candidates for extension. Such suitability is
usually decided based either on the abstract syntax or on the nota-
tion of the profiled concept. Whatever the criterion, the modeller

3 http://www.magicdraw.com

usually chooses the base metaclass whose either abstract syntax or
notation most closely matches that of the profiled concept.

During this process, the modeller can be faced with two exten-
sion situations that are prone to causing problems later on:

• The modeller chooses a base metaclass whose abstract syntax is
similar to that of the profiled concept. This base metaclass, how-
ever, provides a notation that greatly differs from the desired one,
and whose adaptation requires more than the mere addition of
icons. Since this icon addition is the only normative notational
extension in UML, the resulting notation is not suitable for the
domain, and therefore the profile is dismissed in practice.

• The modeller chooses a base metaclass whose notation (con-
crete syntax) is similar to that of the profiled concept. This base
metaclass, however, needs to be heavily constrained in order
to represent the abstract syntax of the profiled concept, what
unduly increases the complexity of the profile and turns it into a
non-conservative extension.

Let us exemplify these situations.
The first situation occurs when a metaclass is extended for syn-

tactic reasons, but its notation (which has to be adopted – decorated
or not with icons – too) is unsuitable for the domain-specific lan-
guage.

Example 2.1 (ER profile for conceptual data modelling). Below in
this paper, we present as a running example different versions of
an ER profile (Section 4). Fig. 4 presents the version where the
most suitable candidates from a syntactic point of view have been
selected. The resulting notation can be seen in the right side of the
figure. This iconised class-diagram notation is clearly different from
the look one would expect to find for an ER diagram.

The second situation occurs when a metaclass is extended
because of its notation suitability, at the price of having to deal
with a syntax that does not correspond with that of the target
concept. When this happens, it is common to define an extra set
of constraints over the profiled UML metamodel in order to adapt
such syntax. Constraints that redefine the syntax of base UML meta-
classes, violating the syntax rules of the base metaclass, not only
increase the profile complexity, but they also often turn it into a
non-conservative extension, much more error-prone for designers.

Example 2.2 (UML profile for data warehouses by Abelló et al. (2006)).
Abelló et al. (2006) present a domain-specific language for data
warehouses. In this UML profile, facts and dimensions of analysis
are modelled as Classifier Stereotypes. Such mapping allows
the modelling of domain-specific relations (e.g., aggregations, data
flows, etc.) between them. UML Classifiers are a ‘classification of
instances’ (Object Management Group, 2009) (Section 7.3.8). How-
ever, in this UML profile, neither facts nor dimensions should have
instances; in fact, syntactically speaking, both notions are closer to
containers than to classifiers. This profile is a good example of a
non-conservative extension. This UML profile still poses another
notational problem: the Dimension Stereotype has two nota-
tions. At a higher level, dimensions are denoted as rectangles with
a text label (the Classifier name) inside. At a lower level, they
are denoted as rectangles containing several classes which they are
composed of. This contrasts with UML, where the Classifier is an
abstract model Element and so, properly speaking, it should have
no notation (Object Management Group, 2009) (Section 7.3.8).

This situation can become even worse. Sometimes the UML
notation, even with the addition of icons, is simply not expressive
enough to denote elements of the domain-specific language. As an
example we can cite how, in case of scalability concerns, specific
graph layouts (Eichelberger and Schmid, 2009; Dobing and Parsons,

http://www.magicdraw.com


Download	English	Version:

https://daneshyari.com/en/article/459987

Download	Persian	Version:

https://daneshyari.com/article/459987

Daneshyari.com

https://daneshyari.com/en/article/459987
https://daneshyari.com/article/459987
https://daneshyari.com/

