

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On minors of the compound matrix of a Laplacian

LINEAR

Applications

R.B. Bapat¹

Indian Statistical Institute, New Delhi, 110016, India

ARTICLE INFO

Article history: Received 14 June 2012 Accepted 28 August 2013 Available online 26 September 2013 Submitted by R. Brualdi

MSC: 15A15 05C05

Keywords: Laplacian Minors Compound Trees

ABSTRACT

Let *L* be an $n \times n$ matrix with zero row and column sums, $n \ge 3$. We obtain a formula for any minor of the (n - 2)-th compound of *L*. An application to counting spanning trees extending a given forest is given.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider graphs with no loops but possibly with multiple edges. The vertex set and the edge set of a graph *G* are denoted by V(G) and E(G) respectively. We usually take $V(G) = \{1, ..., n\}$. Let *G* be a graph with $V(G) = \{1, ..., n\}$. The adjacency matrix *A* of *G* is the $n \times n$ matrix with a_{ij} equal to the number of edges between *i* and *j* if $i \neq j$, and $a_{ii} = 0$, i = 1, ..., n. The Laplacian matrix *L* of *G* is defined as D - A, where *D* is the diagonal matrix of vertex degrees. Clearly, *L* is symmetric with zero row and column sums. (A row sum of a matrix is the sum of all the elements in a row. A column sum is defined similarly.) It is well-known that *G* is connected if and only if the rank of *L* is n - 1. We refer to [1] for background concerning graphs and matrices.

0024-3795/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2013.08.042

E-mail address: rbb@isid.ac.in.

¹ The author acknowledges support from the JC Bose Fellowship, Department of Science and Technology, Government of India.

The Matrix-Tree theorem asserts that any cofactor of the Laplacian equals the number of spanning trees of the graph. A combinatorial interpretation of all minors of the Laplacian matrix can also be given, see [2,3].

We introduce some further notation and definitions. The determinant of the square matrix *A* is denoted by |A|. Let *A* be an $m \times n$ matrix and let $1 \le k \le \min\{m, n\}$. We denote by $Q_{k,n}$, the set of increasing sequences of *k* elements from $\{1, \ldots, n\}$. For indices $I \subset \{1, \ldots, m\}$, $J \subset \{1, \ldots, n\}$, A[I|J] will denote the submatrix of *A* formed by the rows indexed by *I* and the columns indexed by *J*. The *k*-th compound of *A*, denoted by $C_k(A)$, is an $\binom{m}{k} \times \binom{n}{k}$ matrix defined as follows. The rows and the columns of $C_k(A)$ are indexed by $Q_{k,n}$, $Q_{k,n}$, respectively, where the ordering is arbitrary but fixed. If $I \in Q_{k,n}$, $J \in Q_{k,n}$, then the (I, J)-entry of $C_k(A)$ is set to be |A[I|J]|.

If *A* and *B* are matrices of order $m \times n$, $n \times m$ respectively and if $1 \le k \le \min\{m, n, p\}$, then it follows from the Cauchy–Binet formula that $C_k(AB) = C_k(A)C_k(B)$.

If $S, T \subset \{1, ..., n\}$, then we denote by A(S|T), the submatrix of A obtained by deleting the rows indexed by S and the columns indexed by T. If $S = \{i\}$ and $T = \{j\}$, then we denote A(S|T) simply by A(i|j). Similarly, if $S = \{i, j\}$ and $T = \{k, \ell\}$, then we denote A(S|T) by $A(ij|k\ell)$ and so on. The notation A(S|:) will be used to denote the matrix formed by deleting the rows corresponding to S (and keeping all the columns); A(:|T) is defined similarly.

Let K_n be the complete graph on the vertices $\{1, ..., n\}$. We assume $n \ge 3$. Let $E(K_n)$ be the set of edges of K_n , which evidently is the set of unordered pairs of elements in $\{1, ..., n\}$. If *G* is a graph with vertex set $\{1, ..., n\}$ and if vertices *i* and *j* are adjacent, then we denote the edge joining *i* and *j* by (*ij*). We will be interested in $C_{n-2}(L)$ for a matrix *L* with zero row and column sums. (We do not impose any further conditions such as symmetry or the off-diagonal elements being non-positive.) The elements of $C_{n-2}(L)$ are indexed by subsets of $\{1, ..., n\}$ of cardinality n - 2. We prefer to index them instead by unordered pairs of elements from $\{1, ..., n\}$. Thus if e = (ij) and $f = (k\ell)$ are in $E(K_n)$, then the (e, f)-entry of $C_{n-2}(L)$ is given by $|L(ij|k\ell)|$. The objective of the present paper is to provide a formula for any minor of $C_{n-2}(L)$. The motivation for our work is the paper by Burton and Pemantle [4], where a formula for a principal minor of $C_{n-2}(L)$ is given, in the special case when *L* is the Laplacian matrix of a graph. This result will be stated in Section 3. In Section 2 we prove several preliminary results and then obtain our main result.

2. Results

The following result is well-known. We include a proof for completeness.

Lemma 1. Let $L = ((\ell_{ij}))$ be an $n \times n$ matrix with zero row and column sums. Then the cofactors of L are all equal.

Proof. In the matrix L(1|1), add all the columns to its first column. Then since *L* has zero row sums, the first column now becomes the negative of the first column of L(1|2). Thus |L(1|1)| = -|L(1|2)| and hence the cofactors of ℓ_{11} and ℓ_{12} are equal. We can prove similarly that all the cofactors of *L* are equal. \Box

If *L* is an $n \times n$ matrix with zero row and column sums then we denote the common value of its cofactors by $\tau(L)$. Note that $C_{n-1}(L)$ has each element $\pm \tau(L)$. It turns out that there are intricate relationships among the $(n-2) \times (n-2)$ minors of such a matrix *L*. We begin by observing some such relationships in the next two results and these will form one of our main tools.

Lemma 2. Let L be an $n \times n$ matrix with zero column sums. Let $1 \le i < j < k \le n$ and $1 \le u < v \le n$. Then

$$\left| L(ij|uv) \right| = (-1)^{k-i-1} \left| L(jk|uv) \right| + (-1)^{k-j} \left| L(ik|uv) \right|.$$
(1)

Proof. In the matrix L(ij|uv), add all the rows to the *k*-th row (i.e., the row indexed by *k*). Let the resulting matrix be *X*. Since the column sums of *L* are zero, the row *k* of *X* equals the negative of

Download English Version:

https://daneshyari.com/en/article/4599871

Download Persian Version:

https://daneshyari.com/article/4599871

Daneshyari.com