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1. Introduction

Let (.7, (-, -)) be a complex Hilbert space and B(#) denote the algebra of all bounded linear
operators on . equipped with the operator norm || - ||. There are three types of ordering on the real
space of all self-adjoint operators as follows. Let A, B € B(#) be self-adjoint. Then

(1) A > Bif (Ax, x) > (Bx, X).
(2) A > Bif (Ax, x) > (Bx, x) holds for all non-zero elements x € 7.
(3) A> BifA > Band A — Bis invertible.

Clearly (3)= (2)=> (1) but the reverse implications are not valid in general. For instance, if A is the
diagonal operator (1, 1/2,1/3,...) on £2, then A > 0 but A % 0. Of course, in the case where H is of
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finite dimension, (2) and (3) are equivalent. A continuous real valued function f defined on an interval
J is called operator monotone if A > B implies that f(A) > f(B) for all self-adjoint operators A, B with
spectra in J. The Léwner-Heinz inequality says that, f(x) = x” (0 < r < 1) is operator monotone
on [0, co). Léwner [10] proved the inequality for matrices. Heinz [8] proved it for positive operators
acting on a Hilbert space of arbitrary dimension. Based on the C*-algebra theory, Pedersen [11] gave
a shorter proof of the inequality.

There exist several operator norm inequalities each of which is equivalent to the Ldwner-Heinz
inequality; see [7]. One of them is |[A"B"|| < ||AB]|", called the Cérdes inequality in the literature, in
which A and B are positive operators and 0 < r < 1. A generalization of the Cérdes inequality for
operator monotone functions is given in [4]. It is shown in [1] that this norm inequality is related to
the Finsler structure of the space of positive invertible elements.

Kwong [9] showed that if A > B (A > B, resp.), then A" > B" (A" > B',resp.)for0 < r < 1.
Uchiyama [12] showed that for every non-constant operator monotone function f on an interval J,
A > Bimplies f(A) > f(B) for all self-adjoint operators A, B with spectra in J.

There are several extensions of the Lowner-Heinz inequality. The Furuta inequality [6], which states
thatif A > B > 0, then for r > 0, (A"/2APA™/2)1/9 > (A"/2BPAT/2)1/4 holds for p > 0 and g > 1 with
(1 +r)g > p + r,is known as an exquisite extension of the Lowner-Heinz inequality; see the survey
article [5] and references therein.

If f is an operator monotone function on (—1, 1), then f can be represented as
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where 4 is a positive measure on (—1, 1). It is known that
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inwhich0 < r < 1,and
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where A is positive and 0 < r < 1; see e.g. [3, Chapter V].
In this paper we extend the Lowner-Heinz inequality by showing that if A, B € B(.#) such that
A > B > 0, then
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2. The results
We start our work with the following useful lemma.

Lemma 2.1. Let A, B € B(#) be invertible positive operators such that A — B > m > 0. Then
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