
Benefits of using parallelized non-progressive network coding

Minwoo Kim a, Karam Park b, Won W. Ro a,n

a School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul, Korea
b Platform R&D Team, Mobile Communications, Samsung Electronics, 416, Maetan 3-dong, Yeongtong-gu, Suwon, Gyeonggi-do, Korea

a r t i c l e i n f o

Article history:

Received 1 September 2011

Received in revised form

23 February 2012

Accepted 29 May 2012
Available online 9 June 2012

Keywords:

Network coding

Parallel algorithm

Non-progressive decoder

Tiling algorithm

Matrix inversion

Matrix multiplication

a b s t r a c t

Network coding helps improve communication rate and save bandwidth by performing a special coding

at the sending or intermediate nodes. However, encoding/decoding at the nodes creates computation

overhead on large input data that causes coding delays. Therefore the progressive method which can

hide decoding delay in waiting time is proposed in the previous works. However, the network speed

has been greatly accelerated and progressive schemes are no longer the most efficient decoding

method. Thus, we present non-progressive decoding algorithm that can be more aggressively

parallelized than the progressive network coding, which can diminish the advantages of hidden

decoding time of progressive methods by utilizing the multi-core processors. Moreover, the block

algorithm implemented by non-progressive decoding helps to reduce cache misses. Through experi-

ments, our scheme which relies on matrix inversion and multiplication shows 46.0% improved

execution time and 89.2% last level cache miss reduction compared to the progressive method on

multi-core systems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The idea of network coding has been first introduced in
Ahlswede et al. (2000), which is a technique used to improve
communication rate, network security, resource utilization, and
save network bandwidth. In fact, the technique makes it possible
to achieve maximum broadcast capacity by performing special
coding at the nodes. Original data are coded at the source and the
intermediate nodes, and the received messages are decoded at the
destination nodes to recover the original data. The core idea of
network coding is to combine multiple data in order to enhance
the throughput of the entire network system (Wang and Li, 2006).
That is, network coding seeks maximum possible information
flow in a network environment. In other words, considering a
specific network speed – fast or slow – performing high-speed
network coding contributes in better data acquisition rate. By
using network coding, more efficient multicast communication
becomes possible even on lossy packet network environment,
thus enhancing network performance such as throughput and
reliability (Ahlswede et al., 2000; Ho et al., 2003, 2006;
Maymounkov et al., 2006; Park et al., 2010; Shojania and Li,
2007; Chou et al., 2003; Koetter and Medard, 2003; Li et al., 2003).

However, despite these advantages of network coding, the
computational delay problem arises at the receiving nodes. Since
the data are encoded at the sending nodes, the receiving nodes
should decode the received data in order to restore the original
information (Ahlswede et al., 2000). With a popularity of random
linear network coding (Ho et al., 2006; Maymounkov et al., 2006;
Park et al., 2010; Shojania and Li, 2007), many decoding processes
adopt a variation of Gauss–Jordan elimination, of which the
computation complexity is high. Thus, the computation overhead
is never negligible, and might produce huge delays especially
when the size of data is large. The decoding delay overhead may
cancel out the advantages brought by the network coding
technique.

To reduce the computational overhead of the decoding pro-
cess, many works have been done to find the best performing
coding schemes (Ho et al., 2003, 2006; Maymounkov et al., 2006;
Park et al., 2010; Shojania and Li, 2007; Chou et al., 2003; Koetter
and Medard, 2003; Li et al., 2003). Among them, parallelization of
decoding algorithms proposed in the previous research (Park
et al., 2010; Shojania and Li, 2007) shows significant advances
in reducing the decoding time. However, most of these studies
rely on progressive schemes for the decoding methods. Progres-
sive decoding scheme is very effective when the network speed is
slow, because decoding operation can be hidden in the waiting
time of the packets. However, we have found out two weaknesses
of the progressive scheme. One is that the parallelization of
progressive scheme produces significant amount of thread crea-
tion and destruction compared to a non-progressive method.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jnca.2012.05.014

n Corresponding author. Tel.: þ82 2 2123 5769; fax: þ82 2 313 2879.

E-mail addresses: kenstars@yonsei.ac.kr (M. Kim),

karam.park@samsung.com (K. Park), wro@yonsei.ac.kr (W.W. Ro).

Journal of Network and Computer Applications 36 (2013) 293–305

www.elsevier.com/locate/jnca
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2012.05.014
dx.doi.org/10.1016/j.jnca.2012.05.014
dx.doi.org/10.1016/j.jnca.2012.05.014
mailto:kenstars@yonsei.ac.kr
mailto:karam.park@samsung.com
mailto:wro@yonsei.ac.kr
dx.doi.org/10.1016/j.jnca.2012.05.014

The other is that the implementation of aggressive parallelization
and cache-aware parallelization of network coding is difficult for
the progressive scheme. Since network coding is a time-sensitive
application, frequent thread creation and low parallelization
results in severe overall performance degradation. Moreover,
performance gain of the progressive scheme is not that significant
when the network speed is fast, since decoding time cannot be
hidden in the waiting time any longer. We conclude that the
progressive scheme is not the best way of decoding when the
speed of the network is high.

Thus, in this paper we propose non-progressive schemes that
wait until all the packets arrive before starting the decoding
process. To demonstrate the advantage of non-progressive
schemes first, we assume two cases: high network speed envir-
onment and lower network speed environment. The progressive
decoding method proposed in Park et al. (2010) is analyzed and
we compare it with non-progressive decoding schemes assuming
different network speeds. For the realization of non-progressive
decoding schemes, we focus mainly on parallelization method in
order to accelerate the process by reducing the number of thread
creation and destruction operations. We have found out that if the
decoding time is decreased by aggressive parallelization algo-
rithms, waiting time overhead of the arrival of all the packets can
be canceled out due to short decoding delays. This is also very
beneficial since the computing resources can be used for other
applications until the actual decoding starts. We seek to improve
the non-progressive decoding method so that it can diminish the
advantages of progressive schemes.

Two types of non-progressive methods are presented in this
paper: one relying purely on Gauss–Jordan elimination and another
that relies on matrix inversion and multiplication. We adopt block-
wise and tiling methods in order to improve data locality. Blockwise
Gauss–Jordan elimination is used for the pure Gauss–Jordan decod-
ing method and also for the matrix inversion (Melab et al., 2000;
Petiton and Aouad, 2004; Vancea and Vancea, 2008), and tiling
scheme is adopted by matrix multiplication (Hunold et al., 2004;
Park et al., 2003). These methods modify the general data access
pattern in a matrix into a more efficient manner. Then, paralleliza-
tion of the non-progressive methods is considered. We seek for the
processes that can run simultaneously due to the data indepen-
dence. The improvement made on the decoding process of non-
progressive network coding is done by adopting well-known paral-
lelization schemes. Our main contribution of the research work is
the development of high speed non-progressive decoder that out-
performs progressive decoding methods.

Our proposed algorithm is compared with other decoding
methods including purely progressive model (Park et al., 2010;
Shojania and Li, 2007) and hybrid model, and its performance is
evaluated via experiments on real machines. The execution time and
the number of cache misses are measured for the comparison.
Through the experiments on real machines, we have found out that
the non-progressive decoding method that relies on matrix inver-
sion and multiplication shows its effectiveness. On an average, we
achieve 46.0% of performance improvement with the 8-core system
compared to the implementation of the progressive decoding
scheme which is also parallelized over the 8 cores. Moreover, our
method improves cache performance by reducing 70.3% of the L1
cache misses and 89.2% of the L2 (last level) cache misses.

2. Background research

2.1. Advantages of network coding

Figure 1 illustrates a simple one-source two-sink network
model with a simple network coding (Ahlswede et al., 2000).

Symbols a and b represent information bits which are sent from
the source node (S) to both sinks (D1 and D2). As seen from the
figure, both a and b arrive at node 3. If the capacity of each edge is
the size of one bit, delay will occur since only one bit among {a, b}
can be sent from node 3 to node 4 at a time. To improve
bandwidth efficiency between nodes 3 and 4, network coding
can be adopted (Ahlswede et al., 2000).

In the example presented in Fig. 1, the XOR of a and b is
calculated (encoding process) at node 3 and the result is sent to
node 4. As a result, both bits a and b are received at node D1 with
no extra delay, by recovering bit a with b and a� b (decoding
process). Bit b can be recovered with the same manner at node
D2. Thus, combining the data using network coding technique
increases the bandwidth efficiency by enhanced data throughput
(Wang and Li, 2006; Maymounkov et al., 2006).

2.2. Encoding and decoding schemes with random linear network

coding

The network coding method used in this paper basically
follows the schemes introduced in Ho et al. (2003, 2006); Chou
et al. (2003); Koetter and Medard (2003); and Li et al. (2003).
Especially, we adopt the random linear network coding intro-
duced by Ho et al. (2006) where the sending nodes perform
random linear mappings from input data onto outputs of the
coded data. All the arithmetic calculation is performed by finite
field operations. Addition and subtraction are done by simple
XORs and multiplication and division are performed by Galois
Field GF(28) operations. The reason for using GF operations is to
prevent overflows, especially when multiplication is performed.
Moreover, remainders that might be produced in division opera-
tion can be prevented by finite field operations.

Data that are sent from the source is represented by matrix X.
Matrix X is encoded at the sending nodes with being multiplied
by some random coefficient matrix A, which in result produces
matrix B. Matrices A and B are put together and each row forms
the unit of transfer called packet. The concept of encoding is
presented in Fig. 2. After the packets have arrived at the receiving
nodes, matrix X is decoded from matrices A and B. This basic
principle of encoding and decoding is further researched in the
other previous literatures (Ho et al., 2006; Chou et al., 2003).
Decoding process will be the main issue handled in this paper,
and we propose aggressively parallelized decoding algorithms in
network coding.

As described in Fig. 2, A is an n�n matrix and X and B are
n�m matrices. Throughout this paper, the value of m will be
larger than n, in most cases mZ4n where the value of n span from
64 to 1024. This is because decoding as much information as
possible with a single coefficient matrix is more efficient.

To decode the arrived packets and obtain X, we can basically
use two different approaches. The first method is a traditional
approach which obtains the inverse matrix of A and multiplies it

a

a

a

b

b

b

a b
a b

a b
encode

S

1

2

3 4

D1

D2

decode

decode

Fig. 1. One-source two-sink network.

M. Kim et al. / Journal of Network and Computer Applications 36 (2013) 293–305294

Download	English	Version:

https://daneshyari.com/en/article/460022

Download	Persian	Version:

https://daneshyari.com/article/460022

Daneshyari.com

https://daneshyari.com/en/article/460022
https://daneshyari.com/article/460022
https://daneshyari.com/

