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We study the finite-step realizability of the joint/generalized spec-

tral radius of a pair of real square matrices S1 and S2, one of which

has rank 1, where 2 ≤ d < +∞. Let ρ(A) denote the spectral ra-

dius of a square matrix A. Then we prove that there always exists a

finite-length word (i∗1, . . . , i∗m) ∈ {1, 2}m, for some finite m ≥ 1,

such that

m

√
ρ(Si∗1 · · · Si∗m ) = sup

n≥1

{
max

(i1,...,in)∈{1,2}n
n

√
ρ(Si1 · · · Sin )

}
.

In other words, there holds the spectral finiteness property for

{S1, S2}. Explicit formula for computation of the joint spectral ra-

dius is derived. This implies that the stability of the switched system

induced by {S1, S2} is algorithmically decidable in this case.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let S = {S1, . . . , SK} ⊂ R
d×d be an arbitrary finite set of real d-by-d matrices and ‖ · ‖ a matrix

norm on the space R
d×d of all real d × d matrices, where 2 ≤ d < +∞ and K ≥ 2. To capture the

maximal growth rate of the trajectories generated by random products of matrices S1, . . . , SK in S, in

1960 [38] Rota and Strang introduced an important concept– joint spectral radius of S –by
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ρ̂(S) = lim
n→+∞

{
max

(i1,...,in)∈Kn

n

√
‖Si1 · · · Sin‖

}
.

Here and in the future

K
n :=

n-times︷ ︸︸ ︷
{1, . . . , K} × · · · × {1, . . . , K}

stands for the set of all words (i1, . . . , in) of finite-length n, composed of the letters 1, . . . , K , for any
integer n ≥ 1. Let

Σ+
K = {

i(·) : N → K
}
, where N = {1, 2, . . . },

be the set of all the one-sided infinite sequences (also called switching signals of S). We write i(·) as i·
for simplicity. Then we see, from Barabanov [1] for example, that ρ̂(S) < 1 if and only if

‖Si1 · · · Sin‖ → 0 as n → +∞ ∀i· ∈ Σ+
K .

In other words, ρ̂(S) < 1 if and only if the linear switched dynamical system, also written as S,

xn = x0 · Si1 · · · Sin , x0 ∈ R
d, n ≥ 1, and i· ∈ Σ+

K ,

is absolutely asymptotically stable, where the initial state x0 ∈ R
d is an arbitrary given d-dimensional

row vector. In fact, from [14] there follows

ρ̂(S) = max
i·∈Σ+

K

{
lim sup
n→+∞

n

√
‖Si1 · · · Sin‖

}
.

It is a well-known fact that the joint spectral radius ρ̂ plays a critical role in a variety of applications

such as switched dynamical systems, differential equations, coding theory, wavelets, combinatorics,

and so on; see, for example, [27].

It is easily seen that ρ̂(S) is a nonnegative real number, independent of the norm ‖ · ‖ used here.

Although ρ̂(S) is independent of the norm ‖ · ‖ chosen, its approximation based on the above limit

definition does rely upon an explicit choice of the norm ‖ · ‖. How to construct an appropriate norm

to realize ρ̂(S) has been becoming an important and challenging topic, see e.g. [42]. In many cases,

computing ρ̂ by definition cannot halt at somefinite-time step n, as shown by the singlematrix system

A =
⎡
⎣1 0

1 1

⎤
⎦

where ρ̂(A) = limn→+∞ n
√‖An‖ = 1 by the classical Gel’fand spectral radius formula, however, there

holds n
√‖An‖ > 1 for all n ≥ 1. For that reason in part, Daubechies and Lagarias in 1992 [16] defined

the equally important concept – generalized spectral radius of S – by

ρ(S) = lim sup
n→+∞

{
max

(i1,...,in)∈Kn

n

√
ρ(Si1 · · · Sin)

}
,

where ρ(A) stands for the usual spectral radius for any matrix A ∈ R
d×d. And they conjectured there

that a Gel’fand-type formula should hold for S. This was proved by Berger and Wang in 1992 [2], i.e.,

there holds the following Gel’fand-type formula.

Berger–Wang Formula 1.1. ρ(S) = ρ̂(S), for any bounded subset S ⊂ R
d×d.

Because of its importance, this Gel’fand-type spectral-radius formula has been reproved by using

different interesting approaches, for example, in [17,39,7,5,9,11], in order to gain the inside charac-

teristics of this relationship. According to this formula, the computation of ρ(S) has more flexibility,
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