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We shall prove the inequalities

|||(A + B)(A + B)∗||| � |||AA∗ + BB∗ + 2AB∗|||
� |||(A − B)(A − B)∗ + 4AB∗|||

for all n× n complex matrices A, B and all unitarily invariant norms

||| · |||. If further A, B are positive definite it is proved that

k∏
j=1

λj(A�αB) �
k∏

j=1

λj(A
1−αBα), 1� k � n, 0� α � 1,

where �α denotes the operatormeans considered byKubo andAndo

and λj(X), 1� j � n, denote the eigenvalues of X arranged in the de-

creasing order whenever these all are real. A number of inequalities

are obtained as applications.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Letn ∈ N.We shall denote byMn the set ofn×n complexmatrices. The set of all Hermitian positive

semidefinite matrices in Mn shall be denoted by Sn whereas Pn shall denote the set of Hermitian

positive definite matrices in Mn. We denote by In the identity matrix in Mn. By X � Y (X > Y) we

mean that X − Y is Hermitian positive semidefinite (Hermitian positive definite).

For X ∈ Mn, we shall always denote by λ1(X) � λ2(X) � · · · � λn(X), the eigenvalues of X arranged

in the decreasing order whenever these all are real. For P ∈ Sn, P
1/2 is the unique Hermitian positive

semidefinite square rootofP.Pα,0� α � 1, isdefinedsimilarly (see [6]). By s1(X) � s2(X) � · · · � sn(X),
we denote the eigenvalues of |X| = (X∗X)1/2, i.e, singular values of X . Notation �e X is used for the

matrix (X + X∗)/2 and is called real part of X .
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Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be elements in R
n. Let x↓ and x↑ be the vectors

obtained by rearranging the coordinates of x in decreasing and increasing order respectively. Theweak

majorization relation x ≺w y means

k∑
j=1

x
↓
j

�
k∑

j=1

y
↓
j , 1� k � n,

whereas weak log-majorization relation x ≺wlog y means

k∏
j=1

x
↓
j

�
k∏

j=1

y
↓
j , 1� k � n.

If x, y ∈ R
n+ then it is well known that x ≺wlog y implies x ≺w y.

A norm ||| · ||| on Mn is said to be unitarily invariant if |||UXV ||| = |||X||| for X ∈ Mn and all

unitaries U, V ∈ Mn. The Ky Fan norms given by

||X||(k) =
k∑

j=1

sj(X), 1� k � n,

and p-norms,

||X||p =
⎛
⎝ n∑

j=1

(
sj(X)

)p
⎞
⎠

1/p

, p� 1, X ∈ Mn,

are familiar examples of unitarily invariant norms. The operator norm || · || is given by ||X|| = s1(X).
It is customary to assume a normalization condition that |||diag(1, 0, . . . , 0)||| = 1. Fan dominance

theorem states that ||A||(k) � ||B||(k), 1� k � n, if and only if |||A||| � |||B||| for all unitarily invariant

norms ||| · |||. The reader is referred to [2] for more properties of such norms.

If z and w are complex numbers, then we have the following inequality:

(z + w)(z + w) � |zz + ww + 2zw| �
∣∣(z − w)(z − w) + 4zw

∣∣. (1.1)

On taking A =
⎛
⎝ 1 1

0 0

⎞
⎠ and B =

⎛
⎝ 1 0

1 0

⎞
⎠ one can see that the inequalities

(A + B)(A + B)∗ �
∣∣AA∗ + BB∗ + 2AB∗∣∣ �

∣∣(A − B)(A − B)∗ + 4AB∗∣∣
are not true. However in Section 2 we shall prove that

|||(A + B)(A + B)∗||| � |||AA∗ + BB∗ + 2AB∗||| � |||(A − B)(A − B)∗ + 4AB∗|||
for all A, B ∈ Mn and all unitarily invariant norms ||| · |||. In fact we shall prove more general results.

Kubo andAndo [8] considered the geometricmean �α of twomatricesA, B ∈ Pn, 0� α � 1,defined
by

A�αB = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 .

It is well known that A�αB � αA + (1 − α)B. In [7] Kosem proved the inequality

∣∣∣∣∣∣∣∣∣(A�1/2B)2
∣∣∣∣∣∣∣∣∣ �

∣∣∣∣∣∣∣∣∣B1/2AB1/2∣∣∣∣∣∣∣∣∣ ,
for A, B ∈ Pn. We shall prove that for A, B ∈ Pn and 0� α � 1,

k∏
j=1

λj(A�αB) �
k∏

j=1

λj(A
1−αBα), 1� k � n. (1.2)
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