

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

Some inequalities for unitarily invariant norms

Jagjit Singh Matharu, Jaspal Singh Aujla

Department of Mathematics, National Institute of Technology, Jalandhar 144011, Punjab, India

ARTICLE INFO

Article history: Received 15 May 2010 Accepted 19 August 2010 Available online 22 September 2010

Submitted by T. Pate

Dedicated to Jose Dias da Silva with respect and affection

AMS classification: Primary: 15A18 47A64 47A30

Keywords: Singular values Positive definite matrix Unitarily invariant norm

ABSTRACT

We shall prove the inequalities

$$|||(A+B)(A+B)^*||| \le |||AA^* + BB^* + 2AB^*|||$$

 $\le |||(A-B)(A-B)^* + 4AB^*|||$

for all $n \times n$ complex matrices A, B and all unitarily invariant norms $|||\cdot|||$. If further A, B are positive definite it is proved that

$$\prod_{j=1}^k \lambda_j(A\sharp_\alpha B) \leqslant \prod_{j=1}^k \lambda_j(A^{1-\alpha}B^\alpha), \quad 1 \leqslant k \leqslant n, \ 0 \leqslant \alpha \leqslant 1,$$

where \sharp_{α} denotes the operator means considered by Kubo and Ando and $\lambda_j(X)$, $1 \le j \le n$, denote the eigenvalues of X arranged in the decreasing order whenever these all are real. A number of inequalities are obtained as applications.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let $n \in \mathbb{N}$. We shall denote by \mathcal{M}_n the set of $n \times n$ complex matrices. The set of all Hermitian positive semidefinite matrices in \mathcal{M}_n shall be denoted by \mathcal{S}_n whereas \mathcal{P}_n shall denote the set of Hermitian positive definite matrices in \mathcal{M}_n . We denote by I_n the identity matrix in \mathcal{M}_n . By $X \geqslant Y$ (X > Y) we mean that X - Y is Hermitian positive semidefinite (Hermitian positive definite).

For $X \in \mathcal{M}_n$, we shall always denote by $\lambda_1(X) \geqslant \lambda_2(X) \geqslant \cdots \geqslant \lambda_n(X)$, the eigenvalues of X arranged in the decreasing order whenever these all are real. For $P \in \mathcal{S}_n$, $P^{1/2}$ is the unique Hermitian positive semidefinite square root of P. P^{α} , $0 \leqslant \alpha \leqslant 1$, is defined similarly (see [6]). By $s_1(X) \geqslant s_2(X) \geqslant \cdots \geqslant s_n(X)$, we denote the eigenvalues of $|X| = (X^*X)^{1/2}$, i.e, singular values of X. Notation $\Re e X$ is used for the matrix $(X + X^*)/2$ and is called real part of X.

^{*} Corresponding author.

Let $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ be elements in \mathbb{R}^n . Let x^{\downarrow} and x^{\uparrow} be the vectors obtained by rearranging the coordinates of x in decreasing and increasing order respectively. The weak majorization relation $x \prec_w y$ means

$$\sum_{j=1}^k x_j^{\downarrow} \leqslant \sum_{j=1}^k y_j^{\downarrow}, \quad 1 \leqslant k \leqslant n,$$

whereas weak log-majorization relation $x \prec_{wlog} y$ means

$$\prod_{i=1}^k x_j^{\downarrow} \leqslant \prod_{i=1}^k y_j^{\downarrow}, \quad 1 \leqslant k \leqslant n.$$

If $x, y \in \mathbb{R}^n_+$ then it is well known that $x \prec_{wlog} y$ implies $x \prec_w y$.

A norm $||| \cdot |||$ on \mathcal{M}_n is said to be unitarily invariant if |||UXV||| = |||X||| for $X \in \mathcal{M}_n$ and all unitaries $U, V \in \mathcal{M}_n$. The Ky Fan norms given by

$$||X||_{(k)} = \sum_{j=1}^{k} s_j(X), \quad 1 \le k \le n,$$

and p-norms,

$$||X||_p = \left(\sum_{i=1}^n (s_j(X))^p\right)^{1/p}, \quad p \geqslant 1, \ X \in \mathcal{M}_n,$$

are familiar examples of unitarily invariant norms. The operator norm $||\cdot||$ is given by $||X|| = s_1(X)$. It is customary to assume a normalization condition that $|||\operatorname{diag}(1,0,\ldots,0)|||=1$. Fan dominance theorem states that $||A||_{(k)} \le ||B||_{(k)}$, $1 \le k \le n$, if and only if $|||A||| \le |||B|||$ for all unitarily invariant norms $|||\cdot|||$. The reader is referred to [2] for more properties of such norms.

If z and w are complex numbers, then we have the following inequality:

$$(z+w)\overline{(z+w)} \le |z\overline{z}+w\overline{w}+2z\overline{w}| \le |(z-w)\overline{(z-w)}+4z\overline{w}|. \tag{1.1}$$

On taking $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ one can see that the inequalities

$$(A + B)(A + B)^* \le |AA^* + BB^* + 2AB^*| \le |(A - B)(A - B)^* + 4AB^*|$$

are not true. However in Section 2 we shall prove that

$$|||(A + B)(A + B)^*||| \le |||AA^* + BB^* + 2AB^*||| \le |||(A - B)(A - B)^* + 4AB^*|||$$

for all $A, B \in \mathcal{M}_n$ and all unitarily invariant norms $||| \cdot |||$. In fact we shall prove more general results. Kubo and Ando [8] considered the geometric mean \sharp_{α} of two matrices $A, B \in \mathcal{P}_n$, $0 \le \alpha \le 1$, defined by

$$A\sharp_{\alpha}B = A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\alpha}A^{\frac{1}{2}}.$$

It is well known that $A\sharp_{\alpha}B \leq \alpha A + (1-\alpha)B$. In [7] Kosem proved the inequality

$$|||(A\sharp_{1/2}B)^2||| \le |||B^{1/2}AB^{1/2}|||,$$

for $A, B \in \mathcal{P}_n$. We shall prove that for $A, B \in \mathcal{P}_n$ and $0 \le \alpha \le 1$,

$$\prod_{j=1}^{k} \lambda_j (A \sharp_{\alpha} B) \leqslant \prod_{j=1}^{k} \lambda_j (A^{1-\alpha} B^{\alpha}), \quad 1 \leqslant k \leqslant n.$$
(1.2)

Download English Version:

https://daneshyari.com/en/article/4600606

Download Persian Version:

https://daneshyari.com/article/4600606

<u>Daneshyari.com</u>