
Ambient-PRISMA: Ambients in mobile aspect-oriented software architecture

Nour Ali a,*, Isidro Ramos b,1, Carlos Solís a,2

a Lero – The Irish Software, Engineering Research Centre, University of Limerick, Limerick, Ireland
b Department of Information Systems and Computation, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain

a r t i c l e i n f o

Article history:
Received 30 November 2008
Received in revised form 23 November 2009
Accepted 8 December 2009
Available online 16 December 2009

Keywords:
Aspect-oriented software architectures
Mobility
Middleware
Distribution
Model driven engineering
Ambients

a b s t r a c t

This work presents an approach called Ambient-PRISMA for modelling and developing distributed and
mobile applications. Ambient-PRISMA enriches an aspect-oriented software architectural approach called
PRISMA with the ambient concept from Ambient Calculus. Ambients are introduced in PRISMA as special-
ized kinds of connectors that offer mobility services to architectural elements (components and connec-
tors) and are able to coordinate a boundary, which models the notion of location. Mobility of architectural
elements is supported by reconfiguring the software architecture. This paper presents a metamodel that
introduces ambients to design aspect-oriented software architectural models for mobile systems. The
design of models is performed using an Aspect-Oriented Architecture Description Language. A middle-
ware called Ambient-PRISMANET which maps the metamodel to .NET technology and supports the dis-
tributed runtime environment needed for executing mobile applications is also presented. In addition, a
CASE Tool which allows users to specify the aspect-oriented architectural models in a graphical way and
generate .NET code is provided. In this way, we explain how Ambient-PRISMA follows Model Driven Engi-
neering. An example of an auction system is used throughout the article to illustrate the work.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the last few decades, the information society has undergone
important changes which have increased the complexity of soft-
ware development. New technologies have become part of our dai-
ly life and the Internet has been established as a framework for
global knowledge. The software, the devices (PCs, laptops, PDAs,
smart phones, etc) and people involved in current business pro-
cesses are usually distributed, and mobile. As a result, the structure
of software systems has become more complex due to the fact that
these systems need to take into account new requirements such as
adaptability, and security.

Software architecture is a discipline that focuses on the design
and specification of overall system structure (Shaw and Garlan,
1996; Bass et al., 2003). It is considered to be the bridge between
the requirements and implementation phases of the software
life-cycle. The software architecture of a system describes its struc-
ture in terms of components (computational units), connectors
(coordination units), and configurations (connection of compo-
nents and connectors) (Medvidovic and Taylor, 2000). Reconfigura-
tion is the change of the system structure. A kind of reconfiguration

that can be found in distributed software systems is mobility. For
example, Carzaniga et al. (1997) define code mobility as the capa-
bility to reconfigure dynamically, at runtime, the binding between
the software components of the application and their physical
location. Thus, code mobility causes the structure of a distributed
system to change by creating and removing bindings (or connec-
tions) between software components and physical locations.

Aspect-Oriented Software Development (AOSD) (Filman et al.,
2004) is also a technique that reduces complexity by increasing
reusability, flexibility, and maintainability across the software
development process. AOSD modularizes crosscutting concerns in
separate entities called aspects (Kiczales et al., 2001). Distribution
and mobility have been identified as crosscutting concerns; sepa-
rating them in aspects increases their reusability, and decreases
maintenance costs (Lobato et al., 2004; Lopes, 1997; Soares and
Borba, 2002). For example, Lopes compared the code of nine case
studies implemented in plain Java with the code obtained in the
DJ aspect-oriented approach (Lopes, 1997). The results obtained
were that in four of the case studies the number of lines achieved
in plain Java were the same as the ones achieved in DJ, and five of
the case studies the number of lines achieved in DJ were reduced in
comparison with the plain Java code. The results demonstrate that
distributed applications can benefit from AOSD as the lines of code
can be reduced and the distribution concerns are well localized for
maintenance tasks.

Research works which integrate AOSD and software architec-
ture have been proposed (Chitchyan et al., 2005; Cuesta et al.,

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.12.009

* Corresponding author. Tel.: +35 3 61 233799.
E-mail addresses: Nour.Ali@lero.ie (N. Ali), iramos@dsic.upv.es (I. Ramos),

Carlos.Solis@lero.ie (C. Solís).
1 Tel.: +34 96 387 73 50.
2 Tel.: +35 3 61 233799.

The Journal of Systems and Software 83 (2010) 937–958

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.12.009
mailto:Nour.Ali@lero.ie
mailto:iramos@dsic.upv.es
mailto:Carlos.Solis@lero.ie
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

2005). Introducing aspects in software architecture improves the
modularization of crosscutting concerns that cannot be reflected
in software architecture concepts (such as components, or connec-
tors) (Batista et al., 2006)). This facilitates the evolution of software
systems (Tarr et al., 1999)), and conserves the traceability of as-
pects across the software life-cycle (Baniassad et al., 2006).

Currently, one of the existing challenges is to allow code gener-
ation from software architecture. Model Driven Engineering (MDE)
(Schmidt, 2006) (also known as Model Driven Development) is a
software development approach based on transformations be-
tween models. MDE proposes the development of software by
using models that describe a system in a technology-independent
way. These models can be transformed into technology dependent
models, which describe a system based on a specific technology.
Two main approaches exist for supporting MDE through tools:
the Model Driven Architecture (MDA) proposed by the Object Man-
agement Group (OMG) (Object Management Group, 2003), and the
Software Factories proposed by Microsoft (Greenfield et al., 2004).

This paper presents an approach for developing distributed and
mobile applications called Ambient-PRISMA. Ambient-PRISMA en-
riches an aspect-oriented software architecture approach called
PRISMA with the ambient concept inspired from Ambient Calculus
(AC) (Cardelli and Gordon, 1998; Cardelli, 1998). An ambient is a
bounded place where computation happens such as a phone, a
PC, a folder or a network. AC provides an explicit and abstract
way for modelling locations, as well as a realistic mobility model
that supports mobile computation (mobile code) and mobile com-
puting (mobile devices) in a unique way.

AMBIENT-PRISMA introduces ambients as new kinds of archi-
tectural elements which define a bounded place where other archi-
tectural elements reside and are coordinated with the exterior of
the boundary. Ambients can be hierarchically organized, conform-
ing to a tree structure that is used to model distributed systems
hierarchies. Architectural elements (including ambients) can move
by entering and exiting ambients. Thus, mobility causes software
architecture to reconfigure which involves removing mobile archi-
tectural elements from their originating ambients and adding them
to their destination ambients, as well as creating and deleting con-
nections among architectural elements. The functionality (behav-
iour) of an ambient is defined through mobility, coordination and
distribution aspects.

Ambient-PRISMA follows MDE. It provides a metamodel for
designing aspect-oriented software architectural models of mobile
systems in a technology-independent way, a middleware called
Ambient-PRISMANET, and a CASE Tool. The Ambient-PRISMANET
middleware maps the metamodel to .NET technology and supports
the distributed runtime environment needed to execute mobile
applications. It also provides reconfiguration mechanisms needed
for supporting mobility. The CASE Tool allows users to specify

the aspect-oriented architectural models in a graphical way and
generate .NET code of mobile applications.

The structure of the paper is as follows: Section 2 gives an over-
view of the PRISMA approach. Section 3 explains an Auction Sys-
tem example used to illustrate the work presented in this paper.
Section 4 explains the characteristics of AMBIENT-PRISMA. Section
5 defines the AMBIENT-PRISMA metamodel basing on the PRISMA
one. Section 6 shows how AMBIENT-PRISMA software architectural
models can be defined. Section 7 introduces the AMBIENT-PRISMA-
NET middleware, which permits the execution of AMBIENT-PRIS-
MA models. Section 8 presents the AMBIENT-PRISMA Case tool
that is used for modelling, and executing distributed and mobile
applications by means of Model Driven Engineering techniques.
Section 9 presents related work in aspect-oriented software archi-
tectures and mobility. Finally, conclusions and future work are pre-
sented in Section 10.

2. PRISMA

PRISMA (Pérez et al., 2008) is an approach that includes a meta-
model (Pérez et al., 2005), an Aspect-Oriented Architecture
Description Language (Pérez et al., 2006), and a tool for developing
software systems from their aspect-oriented software architec-
tures. PRISMA integrates the AOSD and the Component-Based Soft-
ware Development (CBSD) (Szyperski, 2002) for defining software
architectures. PRISMA uses AOSD to separate crosscutting concerns
(safety, coordination, etc.) of architectures in aspects.

In PRISMA, there are two kinds of architectural elements: com-
ponents and connectors. A component captures the logic of soft-
ware systems and does not act as a coordinator. A connector acts
as a coordinator among other architectural elements. An architec-
tural element can be seen from an external and an internal view. In
the external view (also known as black box view (Miles and Ham-
ilton, 2006), see Fig. 1), an architectural element encapsulates its
functionality and publishes a set of services that are offered to
the rest of the architectural elements. These services are grouped
into interfaces that are published through ports.

In the internal view (also known as white box view (Miles and
Hamilton, 2006)), an architectural element is seen as a prism,
where each side is an aspect. In this way, architectural elements
are represented as a set of aspects and weaving relationships
among them (see Fig. 1). An aspect defines the properties and
behaviour of an architectural element from a concrete crosscutting
concern. The behaviour defined in aspects specifies how and when
services are executed. These services can be part of interfaces. In
PRISMA, the difference between a component and a connector is
that a component cannot have a coordination aspect, and a connec-
tor cannot have a functional aspect but must have a coordination

Architectural
Element

Port1Port2

White Box View Black Box View

Fig. 1. A PRISMA architectural element.

938 N. Ali et al. / The Journal of Systems and Software 83 (2010) 937–958

Download	English	Version:

https://daneshyari.com/en/article/460063

Download	Persian	Version:

https://daneshyari.com/article/460063

Daneshyari.com

https://daneshyari.com/en/article/460063
https://daneshyari.com/article/460063
https://daneshyari.com/

