
An architecture-driven software mobility framework

Sam Malek a,*, George Edwards b, Yuriy Brun c, Hossein Tajalli b, Joshua Garcia b, Ivo Krka b,
Nenad Medvidovic b, Marija Mikic-Rakic d, Gaurav S. Sukhatme b

a Department of Computer Science, George Mason University, Fairfax, VA, USA
b Computer Science Department, University of Southern California, Los Angeles, CA, USA
c Computer Science & Engineering, University of Washington, Seattle, WA, USA
d Google Inc., 1333 2nd Street, Santa Monica, CA, USA

a r t i c l e i n f o

Article history:
Received 1 December 2008
Received in revised form 25 August 2009
Accepted 1 November 2009
Available online 4 November 2009

Keywords:
Software architecture
Mobility
Quality of service analysis
Robotics

a b s t r a c t

Software architecture has been shown to provide an appropriate level of granularity for assessing a soft-
ware system’s quality attributes (e.g., performance and dependability). Similarly, previous research has
adopted an architecture-centric approach to reasoning about and managing the run-time adaptation of
software systems. For mobile and pervasive software systems, which are known to be innately dynamic
and unpredictable, the ability to assess a system’s quality attributes and manage its dynamic run-time
behavior is especially important. In the past, researchers have argued that a software architecture-based
approach can be instrumental in facilitating mobile computing. In this paper, we present an integrated
architecture-driven framework for modeling, analysis, implementation, deployment, and run-time
migration of software systems executing on distributed, mobile, heterogeneous computing platforms.
In particular, we describe the framework’s support for dealing with the challenges posed by both logical
and physical mobility. We also provide an overview of our experience with applying the framework to a
family of distributed mobile robotics systems. This experience has verified our envisioned benefits of the
approach, and has helped us to identify several avenues of future work.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

As the global computing infrastructure transitions from an
emphasis on personal computers to mobile and embedded devices,
ensuring the quality of complex distributed software systems re-
mains an essential focus of research in software engineering and,
particularly, software architecture. Software quality is measured
in terms of quality attributes, such as performance and dependabil-
ity, that are identified and prioritized by system stakeholders. In a
mobile environment, system parameters such as network reliabil-
ity and throughput are far less predictable than in static environ-
ments. Moreover, new quality attributes such as energy
consumption would also need to be taken into account in the de-
sign and construction of these systems. Thus, for systems distrib-
uted on mobile hardware devices, such as smart phones and
wearable computers, evaluating software quality is even more
challenging than for traditional systems.

It has long been acknowledged that software architecture pro-
vides an effective foundation for the quality assurance of large,
complex systems (e.g., Abowd et al., 1995; Medvidovic and Taylor,
2000; Clements et al., 2002; Malek et al., 2007). The key underpin-
ning of our work is the observation that an explicit architectural fo-
cus can also be instrumental in facilitating mobile computing
(Chan and Chuang, 2003; Ciancarini and Mascolo, 1998; Medvido-
vic et al., 2003; Malek et al., 2005b; Malek et al., 2006). Architec-
ture-driven approaches to quality assurance use architectural
abstractions – software components, connectors, communication
ports, events, etc. – to manage complexity and leverage architec-
tural styles to enforce constraints and promote desired system
characteristics. Analogously, architecture-driven approaches to
mobility enable system migration and adaptation during run-time
in a controlled fashion by employing architectural constructs as
the units of mobility.

While existing research (Chan and Chuang, 2003; Ciancarini and
Mascolo, 1998; Sousa and Garlan, 2002), including our own (Medv-
idovic et al., 2003; Malek et al., 2005b; Malek et al., 2006), has ver-
ified the advantages of an architecture-centric approach in the
development of mobile software systems, in practice, the adoption
of such approaches has been limited. We argue that this is due to
the lack of a comprehensive support for architecture-based devel-
opment of mobile software systems. In other words, the majority

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.11.003

* Corresponding author.
E-mail addresses: smalek@gmu.edu (S. Malek), gedwards@usc.edu (G. Edwards),

ybrun@usc.edu (Y. Brun), tajalli@usc.edu (H. Tajalli), joshuaga@usc.edu (J. Garcia),
krka@usc.edu (I. Krka), neno@usc.edu (N. Medvidovic), marija@google.com (M.
Mikic-Rakic), gaurav@usc.edu (G.S. Sukhatme).

The Journal of Systems and Software 83 (2010) 972–989

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.11.003
mailto:smalek@gmu.edu
mailto:gedwards@usc.edu
mailto:ybrun@usc.edu
mailto:tajalli@usc.edu
mailto:joshuaga@usc.edu
mailto:krka@usc.edu
mailto:neno@usc.edu
mailto:marija@google.com
mailto:gaurav@usc.edu
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


of existing architectural research approaches and industrial tools
have dealt with providing point solutions that address particular
mobility concerns. As a result, the developers in the mobility set-
ting have faced some difficulties with fully embracing architectural
abstractions as the foundation for modeling, analyzing, imple-
menting, monitoring, and adapting the system. Moreover, the dis-
crepancies between the existing tools and techniques diminish
some of the key advantages associated with taking an architec-
ture-centric approach.

To better illustrate the current shortcomings and motivate the
problem, let us consider a scenario in which a software developer
uses an architectural modeling tool (Childs et al., 2006; Dashofy
et al., 2005; Edwards et al., 2007) to design a system and analyze
its quality attributes. Since the majority of mobile middleware
platforms do not provide adequate support for the implementation
of architectural abstractions (Malek et al., 2005b; Malek et al.,
2007), the developer is forced either to implement them through
a combination of low-level programming language constructs
(e.g., variables, collections, classes), or to misuse other middleware
constructs (e.g., implement a connector as a middleware compo-
nent). Performing such a complex mapping between constructs
with different semantics and levels of granularity promotes archi-
tectural erosion (Perry and Wolf, 1992). In turn, the analysis per-
formed on the architectural models becomes useless, as one
cannot be certain of the fidelity of the implemented system with
respect to the models.

The above example highlights only one set of problems that
could arise due to the lack of complete life-cycle support for archi-
tecture-based development of mobile software systems. In this pa-
per, we present and evaluate an integrated framework that aims to
alleviate the shortcomings of the existing point solutions.1 Specifi-
cally, our framework comprises:

� a tailorable model of mobile software architectural abstractions
(Medvidovic et al., 2003; Edwards et al., 2007), mobile hardware
platforms on which the software executes (Mikic-Rakic et al.,
2004), and system quality requirements that are of particular
importance to mobile systems (Mikic-Rakic et al., 2008);

� an extensible suite of architectural analysis techniques for
mobile systems, including scenario-driven system simulations
(Edwards and Medvidovic, 2008) and determination of effective
deployments based on quality requirements (Mikic-Rakic et al.,
2004, 2005; Malek et al., 2005a);

� a middleware platform (Malek et al., 2005b) targeted at archi-
tecture-centric implementation of mobile software, and an
accompanying facility for stateful and stateless run-time migra-
tion of software components (Carzaniga et al., 1997);

� a continuous monitoring and architectural awareness methodol-
ogy for detecting execution-condition changes in mobile soft-
ware systems (Tisato et al., 2000); and

� a facility for (re)deployment and run-time adaptation of a soft-
ware system distributed among a set of mobile hardware hosts
(Malek et al., 2007; Mikic-Rakic et al., 2008).

With the exception of mobility support, about which we have
only hypothesized in the context of system deployment in Mikic-
Rakic and Medvidovic (2002) and Mikic-Rakic et al. (2008), the
individual elements of the above framework have been published
previously. This paper describes and illustrates those aspects of
our framework that are pertinent to mobility. Moreover, the main

contribution of our work is the manner in which they are com-
bined to provide complete architecture-driven mobility support.

The framework is broadly concerned with the challenges mobil-
ity presents. We model the impact of physical mobility on the sys-
tem’s resources, such as network connectivity and battery power.
We use simulation and analytical models to assess the degradation
of quality attributes due to movement of devices and employ run-
time adaptation to mitigate such problems. Note that since the
framework has no explicit control over the actual movement of de-
vices, we do not model the movement, but rather its impact on the
system. However, if necessary, we believe the framework could be
extended to model these aspects of mobility as well. We model
logical mobility in terms of changes to the system’s deployment
architecture (Malek, 2007) – a representation of the system’s soft-
ware architecture superimposed on its hardware configuration
and network topology. By adopting an architecture-based ap-
proach to development and adaptation, we avoid architectural ero-
sion due to logical mobility. At run-time, we optimize the software
system’s quality attributes by finding a new deployment architec-
ture and effecting it through logical mobility. Finally, the frame-
work addresses other concerns in the mobile setting, such as
heterogeneity of platforms and efficiency of implementation.

Our experiences with applying the framework on several mo-
bile software systems have been very positive. For evaluation, we
elaborate in detail on one such experience dealing with a family
of mobile robotics systems, provide quantitative data that summa-
rizes the results obtained in other real-world and synthesized
examples, and qualitatively compare the framework with existing
architectural frameworks.

The remainder of the paper is organized as follows. Section 2 de-
tails the challenges of building mobile systems and the framework’s
objectives in mitigating them. Section 3 provides a high-level over-
view of the framework, its accompanying tool suite, and how they
are integrated with one another. Sections 4–8 describe the frame-
work’s support for mobility modeling, analysis, implementation,
monitoring, and adaptation, respectively. Section 9 presents an
overview of our experience to date with the framework, with data
drawn primarily from the domain of mobile robotics. Section 10 re-
lates this approach to existing work. We conclude the paper with
the discussion of challenges that are guiding our ongoing work.

2. Challenges and objectives

As already alluded to in the previous section, mobile setting
presents a number of unique software development challenges
that permeate the entire software-engineering life-cycle:

Fluctuating execution context. Mobile software systems are
characterized by their unknown operational profiles and fluctuat-
ing execution contexts. Since the properties of such systems (e.g.,
network connectivity, bandwidth, and energy consumption) con-
stantly change at run-time and unanticipated events occur, an
accurate analysis of the system’s quality attributes is often not fea-
sible at design-time.

Constrained resources. Mobile devices often have limited
power, network bandwidth, processor speed, and memory. Con-
straints such as these demand highly efficient software systems
in terms of computation, communication, and memory. They also
demand unorthodox solutions, such as off-loading or migrating
parts of a system to other devices.

Heterogeneity. Traditional computing increasingly relies on
standard methods of representing data, computation, and commu-
nication, the best example of which is the SOA technology stan-
dards (i.e., XML, SOAP, WSDL) (Weerawarana et al., 2005). In
contrast, mobile technologies remain largely proprietary. Engineer
of such systems must reconcile proprietary operating systems such

1 Note that our notion of framework is consistent with the term architectural
framework as defined in IEEE 1471 and ISO/IEC 42010 standards (Maier et al., 2001;
ANSI/IEEE, 2007). Our framework consists of several view points (e.g., deployment,
dynamic, static), modeling languages (e.g., xADL, FSP), and is accompanied by a tool
suite for specification and analysis.

S. Malek et al. / The Journal of Systems and Software 83 (2010) 972–989 973



Download English Version:

https://daneshyari.com/en/article/460065

Download Persian Version:

https://daneshyari.com/article/460065

Daneshyari.com

https://daneshyari.com/en/article/460065
https://daneshyari.com/article/460065
https://daneshyari.com

