The Journal of Systems and Software 83 (2010) 1004-1014

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

iy

Scheduling multiple task graphs with end-to-end deadlines in distributed
real-time systems utilizing imprecise computations

Georgios L. Stavrinides *, Helen D. Karatza

Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 2 October 2009

Received in revised form 13 December 2009
Accepted 21 December 2009

Available online 4 January 2010

Keywords:

Distributed real-time systems
Imprecise computations
Input error

Performance evaluation
Scheduling

Task graph

In order to meet the inherent need of real-time applications for high quality results within strict timing
constraints, the employment of effective scheduling techniques is crucial in distributed real-time sys-
tems. In this paper, we evaluate by simulation the performance of strategies for the dynamic scheduling
of composite jobs in a homogeneous distributed real-time system. Each job that arrives in the system is a
directed acyclic graph of component tasks and has an end-to-end deadline. For each scheduling policy,
we provide an alternative version which allows imprecise computations, taking into account the effects
of input error on the processing time of the component tasks of a job. The simulation results show that
the alternative versions of the algorithms outperform their respective counterparts. To our knowledge, an
imprecise computations approach for the dynamic scheduling of multiple task graphs with end-to-end
deadlines and input error has never been discussed in the literature before.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Distributed real-time systems have become increasingly impor-
tant in many domains of our daily life. Such systems are used for
the control of nuclear power plants, financial markets, radar sys-
tems, telecommunication networks, medical care monitoring and
multimedia applications. In a real-time system, the jobs have dead-
lines that must be met. The correctness of the system does not de-
pend only on the logical results of the computations, but also on
the time at which the results are produced. If a real-time job fails
to meet its deadline, then its results will be useless, or even worse,
this may have disastrous consequences for the system and the
environment that is under control (Buttazzo, 2004).

Consequently, in order to guarantee that every real-time job
will produce high quality results within the imposed timing con-
straints, the employment of effective scheduling techniques is cru-
cial in distributed real-time systems. The scheduling algorithm is
responsible for the allocation of processors to jobs and determines
the order in which jobs will be executed on processors.

Based on the observation that in real-time systems it is often
more desirable for a job to produce an approximate result by its
deadline, than to produce an exact result late, Lin et al. proposed
the imprecise computations technique (Lin et al., 1987). According
to this technique, the execution of a real-time job is allowed to

* Corresponding author.
E-mail addresses: gstavrin@csd.auth.gr (G.L. Stavrinides), karatza@csd.auth.gr
(H.D. Karatza).

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.12.025

return intermediate (imprecise) results of poorer, but still accept-
able quality, when the deadline of the job cannot be met. To
achieve this, it is assumed that every job is monotone. That is, the
accuracy of its intermediate results is increased as more time is
spent to produce them. If the execution of a monotone job is fully
completed, then the results are precise (Liu et al., 1991).

A video-on-demand server, for example, which streams movies
and other video content to users over the internet, may unexpect-
edly encounter network congestion, causing some packets to be
lost or to be corrupted during the transmission of a video to the
user. In this case, imprecise computations can allow the system
to reduce the quality of some video frames during the transmis-
sion, so that the video delivered to the user maintains an accept-
able frame rate. Another example, is the collision detection
system in aircraft. This system collects data from the airplane’s ra-
dar, identifies possible collisions with nearby aircraft and notifies
the pilot. Imprecise computations can allow the system to ignore
distant airplanes when an imminent collision is detected and
therefore an immediate notification to the pilot is absolutely nec-
essary. Hence, imprecise computations can provide scheduling
flexibility in real-time systems, by trading off precision for timeli-
ness (Feng, 1996; Hull, 2000; Shih and Liu, 1992).

In distributed real-time systems, jobs usually consist of compo-
nent tasks with precedence constraints among them, so that a
task’s output may be used as input by other tasks of the job. Thus,
jobs are directed acyclic graphs (DAGs) - i.e. task graphs - that have
an end-to-end deadline. That is, component tasks do not have any
specific individual deadlines, but there is an end-to-end timing


http://dx.doi.org/10.1016/j.jss.2009.12.025
mailto:gstavrin@csd.auth.gr
mailto:karatza@csd.auth.gr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

G.L. Stavrinides, H.D. Karatza/The Journal of Systems and Software 83 (2010) 1004-1014 1005

constraint over all the tasks of the job, that must be met. In order
for a task to start execution, all of its predecessor tasks must have
been completed. A task with no predecessors is called an entry task,
whereas a task with no successors is called an exit task. The imme-
diate predecessors of a task are called parents of the particular task,
while the immediate successors of a task are called children of the
particular task.

In the case of imprecise computations, each component task is
assumed to be monotone and that it consists of a mandatory part,
followed by an optional part (Liu et al., 1994; Chung et al., 1990;
Han et al., 2003). In order for a task to produce an acceptable result,
its mandatory part must be completed. The optional part refines
the result produced by the mandatory part. That is, the precision
of a task’s result is further increased, if the task’s optional part is
allowed to be executed longer. Input error may affect the process-
ing time of some tasks. Specifically, if a task’s result is imprecise,
then the execution time of its child tasks may increase, since more
time may be required by the child tasks to produce an acceptable
result when there is error in their input (Hull et al., 1997). In order
for a job to be completed, all of its tasks must complete at least
their mandatory part before the job’s deadline.

Scheduling in distributed real-time systems has been studied by
many authors (Karatza, 2007, 2008; Stavrinides and Karatza, 2008,
2009; Seljak, 1994; Sha et al., 2004). Among the real-time schedul-
ing policies that have been proposed in the literature, the Earliest
Deadline First (EDF) algorithm is the most commonly used (Liu
and Layland, 1973). According to this technique, the deadlines of
the jobs are used for their priority assignment. Task graph schedul-
ing strategies are examined in Kwok and Ahmad (1999); Iverson
and Ozguner (1999) and Chen and Maheswaran (2002), such as
the Highest Level First (HLF) policy (Adam et al., 1974), which as-
signs priorities to the tasks according to their position in the graph.
For the dynamic scheduling of multiple task graphs in multiproces-
sor real-time systems, Cheng et al. (1997) proposed a novel sched-
uling algorithm, called Least Space-Time First (LSTF), that takes into
account both the precedence and the timing constraints among the
tasks. Feng and Liu (1997) investigate the impact of input error on
the static scheduling of a single linear chain of tasks with an end-
to-end deadline on a single processor. On the other hand, Haweet
et al. (2003) examine the static scheduling of a single task graph
with an end-to-end deadline on a single processor, but without
taking into account the effects of input error on the execution time
of the component tasks.

In this paper, we examine the performance of the EDF, HLF and
LSTF algorithms for the scheduling of multiple task graphs (i.e.
composite jobs with a directed acyclic graph structure) with end-
to-end deadlines in a homogeneous distributed real-time system.
We also provide an alternative version for each of the three algo-
rithms, which allows imprecise computations, taking into account
the effects of input error on the processing time of the component
tasks of a job. Our foremost goal is to guarantee that all jobs that
arrive in the system will meet their deadlines, providing high qual-
ity (precise) results. We compare the performance of the schedul-
ing policies by simulation, under various workloads, based on the
Overall System Performance metric, which is explained in Section
5. To our knowledge, an imprecise computations approach for
the dynamic scheduling of multiple task graphs with end-to-end
deadlines and input error has never been discussed in the litera-
ture before.

The remainder of this paper is organized as follows: Section 2
gives a description of the system under study and the workload
model, Section 3 describes the scheduling strategies, Section 4 ex-
plains how imprecise computations are incorporated into the
scheduling process and Section 5 presents and analyzes the simu-
lation results. Finally, Section 6 concludes this paper, providing
suggestions for further research.

2. System and workload model

The target system is considered to be a homogeneous distrib-
uted real-time system, consisting of P processors, each serving its
own queue (memory). Real-time jobs arrive in the system in a Pois-
son stream with rate A. Each job j, that arrives in the system, is a
directed acyclic graph (DAG) of non-preemptible component tasks.
Each vertex in the graph represents a task T; of job J,, whereas a di-
rected edge E; between a task T; and a task T; represents a message
that must be transmitted from task T; to task T;. A task can start
execution only if it has received its required input data from all
of its parent tasks. It is assumed that no additional data are re-
quired during a task’s execution and that the output data of a task
are available only after the task’s completion.

Assigned to each edge (message) is a communication cost. The
communication cost of a particular message between any pair of
processors in the system is considered to be the same. Moreover,
the communication cost between two precedence constrained
tasks assigned to the same processor is considered to be negligible.
It is assumed that the processors in the system are fully connected,
that the communication is contention-free and that a processor
can receive and send data to other processors simultaneously, even
when it is executing a task. Thus, no attention is paid to the routing
strategies used for communication. Hereafter, we will use the
terms job, task graph and DAG interchangeably.

A job that arrives in the system may have one or more entry
tasks and one or more exit tasks. Each component task T; of a job
Ji is characterized by the following parameters:

e Its service (execution) time S;, which is exponential with mean
1/u.

o Its priority value PV;. The task with the smallest or largest prior-
ity value (depending on the scheduling algorithm which is
employed) is considered to have the highest priority for
scheduling.

o Its level L;. The level of a task is the length of the longest path
from the particular task to an exit task. The length of a path in
the graph is the sum of the service times and the communication
costs of all the tasks and edges on the path. The level of an exit
task is equal to the task’s service time.

e Its rank R;, which denotes at which level of the graph J, task T; is
located. For example, if T; is an entry task, then its rankis R; = 1,
since it is located at the top level of the graph. The tasks that are
located at the same graph level have the same rank and can be
processed in parallel. A level in the graph should not be mis-
taken for the level L; of a task T;.

e The set v of its parent tasks.

e The set %; of its child tasks.

The communication cost C;; of an edge E; between two tasks T;
and T; in a job J, is defined as follows:

Cy = CCFy - Si 1)

where CCFj is the communication cost factor of the edge E; and may
be different for each edge in job J,. S; is the service time of the pre-
decessor task T;.

Consequently, a job J, that arrives in the system is characterized
by the following parameters:

e Its arrival time A.

e The number N, of its component tasks. It is assumed that
1 < Ny < MAX, where MAX is the maximum number of tasks in
a graph.

e The topological order list %, of its tasks. £, is a list where all the
tasks of the graph are placed in ascending order of their ranks
and therefore, according to their topological order in the graph.



Download English Version:

https://daneshyari.com/en/article/460067

Download Persian Version:

https://daneshyari.com/article/460067

Daneshyari.com


https://daneshyari.com/en/article/460067
https://daneshyari.com/article/460067
https://daneshyari.com

