The Journal of Systems and Software 83 (2010) 1051-1075

iy

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Software metadata: Systematic characterization of the memory behaviour
of dynamic applications ™

Alexandros Bartzas ?, Miguel Peon-Quiros ®*, Christophe Poucet “, Christos Baloukas ?,
Stylianos Mamagkakis ¢, Francky Catthoor “¢, Dimitrios Soudris ¢, Jose M. Mendias?

2 ECE Department, Democritus Univ. of Thrace, 67100 Xanthi, Greece

> DACYA/UCM, 28040 Madrid, Spain

€IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium

dESAT, K.U. Leuven, 3001 Heverlee, Belgium

€ ECE School, National Technical Univ. of Athens, 15780 Zografou, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 12 September 2008

Received in revised form 31 December 2009
Accepted 1 January 2010

Available online 13 January 2010

Development of new embedded systems requires tuning of the software applications to specific hard-
ware blocks and platforms as well as to the relevant input data instances. The behaviour of these appli-
cations heavily relies on the nature of the input data samples, thus making them strongly data-
dependent. For this reason, it is necessary to extensively profile them with representative samples of
the actual input data. An important aspect of this profiling is done at the dynamic data type level, which
actually steers the designers choice of implementation of these data types. The behaviour of the applica-

ggﬁigfg%emdam tions is then characterized, through an analysis phase, as a collection of software metadata that can be
Profiling used to optimize the system as a whole. In this paper we propose to represent the behaviour of data-
Analysis dependent applications to enable optimizations, rather than to analyze their structure or to define the

engineering process behind them. Moreover, we specifically limit ourselves to the scope of applications
dominated by dynamically allocated data types running on embedded systems. We characterize the soft-
ware metadata that these optimizations require, and we present a methodology, as well as appropriate
techniques, to obtain this information from the original application. The optimizations performed on a
complete case study, utilizing the extracted software metadata, achieve overall improvements of up to
42% in the number of cycles spent accessing memory when compared to code optimized only with the
static techniques applied by GNU G++.

Embedded systems
Dynamic data types
Optimization

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

System-level design and optimization of embedded systems is a
highly challenging task. Especially since embedded systems are
becoming more and more complex, from both the hardware as
well as the software perspective (Sangiovanni-Vincentelli, 2007).
Nowadays, it is feasible to build a system-on-chip (SoC) accommo-
dating a multitude of analogue and digital components. However,
the development process of software components is the one that
consumes the majority of the time-to-market and cost budget

* This paper has been supported through a research grant from HiPEAC NoE
http://www.hipeac.net.
* Corresponding author. Tel.: +34 615607843.

E-mail addresses: ampartza@ee.duth.gr (A. Bartzas), mikepeon@gmail.com
(M. Peon-Quiros), poucetc@imec.be (C. Poucet), cmpalouk@ee.duth.gr (C. Baloukas),
mamagka@imec.be (S. Mamagkakis), catthoor@imec.be (F. Catthoor), dsoudris@
microlab.ntua.gr (D. Soudris), mendias@dacya.ucm.es (J.M. Mendias).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.01.001

(Bernstein et al., 2004; Graaf et al., 2003; Frakes and Kang, 2005).
Over the last few years, the main focus in the design of embedded
systems has been to provide good performance and at the same
time achieve low-power consumption. To achieve optimal results,
a good coordination between hardware and software design is re-
quired. Therefore, memory-intensive applications running on
embedded platforms (e.g., multimedia) must be closely linked to
the underlying operating system (OS) and hardware. Putting all
this together, it is clear that developing a complete, working sys-
tem is an integration nightmare (Sangiovanni-Vincentelli, 2007).
Additionally, it is common practice to develop embedded plat-
forms with extensive use of on-chip memory subsystems (i.e., ca-
ches and scratchpads) to improve the performance of new
demanding applications. Such an overview of current embedded
platforms is presented in Wolf (2004). Furthermore, the existing
optimization methodologies mostly rely on purely compile-time
information. As a result, most optimization research for embedded
systems is focused on the effect of static data allocation and access


http://dx.doi.org/10.1016/j.jss.2010.01.001
http://www.hitech-projects.com/euprojects/betsy
mailto:ampartza@ee.duth.gr
mailto:mikepeon@gmail.com
mailto:poucetc@imec.be
mailto:cmpalouk@ee.duth.gr
mailto:mamagka@imec.be
mailto:catthoor@imec.be
mailto:dsoudris@microlab.ntua.gr
mailto:dsoudris@microlab.ntua.gr
mailto:mendias@dacya.ucm.es
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

1052 A. Bartzas et al. /The Journal of Systems and Software 83 (2010) 1051-1075

scheduling, decided at compile-time (Avissar et al., 2001; Benini
and Micheli, 2000).

However, in modern consumer embedded systems, such as PDAs,
smartphones and portable game platforms, it is common to have a
number of complex dynamic applications (e.g., web browsing Bell-
avista et al., 2002, 3D rendering Nadalutti et al., 2006 or signal pro-
cessing) running simultaneously. The latter are not amenable to
pure static compile-time optimizations. The number, as well as the
exact combination, of these applications running on modern embed-
ded systems cannot be decided at design-time as this information
depends on the input arriving from the user and the environment
at run-time. The dynamicity of each application task, in turn, also de-
pends on the user input, environment input and the interactions
amongst the applications themselves as well as with the OS.

The problem then resides in optimizing the design of such sys-
tems using as much design-time information as possible, but leav-
ing enough freedom to accommodate the dynamic aspects of their
behaviour without resorting to worst-case bounded solutions. In
order to tackle this problem, a new methodology that takes into ac-
count these variations in behaviour needs to be developed. This
methodology will require extensive information about the static
and dynamic characteristics of the applications.

Unlike the hardware metadata that is already standardized in
the IP-XACT standard (The SPIRIT Consortium), there is not a stan-
dard representation, not even a definition, of software metadata
to represent the characteristics of the dynamic data access behav-
iour of applications subject to varying inputs. In this paper, we
propose a uniform representation of the dynamic data access
and allocation behaviour of the applications, which we will define
as software metadata. Additionally, we propose a systematic meth-
odology to obtain this metadata from dynamic applications, be-
cause the study of applications that mainly use static data has
already been well characterized and can be even done in an ana-
lytic way. Good overviews are presented in Panda et al. (1998).
Instead, the behaviour of the applications that we target is depen-
dent to a great degree on the nature of the specific input data
stream, the behaviour of the user as well as the environment.
The proposed metadata representation as well as the proposed
profiling and analysis methodologies form a framework providing
a system level representation of the behaviour of dynamic
embedded software applications. The focus and contributions of
this paper are situated in:

(1) Defining a uniform representation for the application meta-
data information as well as a methodology to extract it from
dynamic applications.

(2) Introducing profiling and analysis techniques as a concrete
implementation of this methodology. These profiling tech-
niques improve on the current state of the art and may also
be used for other general purpose profiling work.

(3) Illustrating how this metadata can be used by different sys-
tem level methodologies and their relevance to the targeted
memory management optimizations.

The rest of the paper is organized as follows. First, we give a
motivational example and in Section 3 we discuss the related work.
Next, we introduce the metadata representation as well as present
the overall methodology required to gather this metadata in Sec-
tion 4. The feasibility of software metadata extraction is presented
in Section 5, where we introduce the specific method we use for
obtaining the profiling information, and in Section 6, where we dis-
cuss the required analysis for turning this profiling information in
desired data. Then, in Section 7, we show one case study that em-
ploys this metadata for various optimizations that concern the dy-
namic data energy consumption and memory footprint. Finally,
conclusions are drawn and future work is outlined in Section 8.

2. Motivational example

Let us assume that three different groups (A, B and C) need to
apply their new optimization methodologies. The first task they
encounter is the characterization of the behaviour of the applica-
tion(s) they wish to optimize. Each group will need to allocate
some time to profile, run and analyze it. The “conventional” way
to perform this task is illustrated in Fig. 1a. There, all of the groups
perform the same steps — profiling and analysis (in different levels
of granularity). Moreover, the information produced by each of the
groups will not be suitable for the other groups if they do not share
a common representation.

A new design flow would allow the information sharing of pro-
filing and analysis data among different research groups (as it is
shown in Fig. 1b). With a common representation for the software
metadata of applications, the three independent groups would
benefit from the characterization work performed by the others
or even by a different group that worked previously on the same
application. Additionally, the time required to perform the “global”
profiling (able to cover the needs of the optimization methodolo-
gies) and analysis work is much less than the addition of the indi-
vidual efforts. Let us assume that f() is the effort/time of
performing profiling and analysis for one specific methodology,
then f(metadata) < f(A) + f(B) + f(C). Moreover, the fact that the
relevant information is included in any analysis and that it has a
common format allows saving time and applying it on the actual
optimization work. Once the information is extracted, the rest of
the teams will not need to invest any time on profiling and
characterization.

3. Background and related work

Up until today, a lot of research has been performed in memory
analysis and optimization techniques for embedded systems to re-
duce their power dissipation and increase performance (Panda
et al., 2001; Benini et al., 2000). Traditional optimizations for
embedded systems use compile-time, manifest information. The
source code is completely transformed to a specific standardized
form such that the analysis can easily happen (Catthoor et al.,
2002). For modern dynamic applications this is no longer possible,
as the dynamicity of behaviour due to the input dynamics cannot
be captured by source code analysis alone.

On the aspect of profiling, most tools work directly on the bin-
ary application without requiring source code instrumentation. For
example, prof (Graham et al., 1982) uses debugging information
to find out the number of function calls and the time spent in each
of them. However, it is not designed to provide insights for optimi-
zations according to memory access patterns. More recent tools
such as Valgrind (Nethercote, 2004) are able to look at the memory
accesses and use this information to provide consistency checks for
the executed programs. Valgrind allows tracing on which line in
the program an access occurs, but cannot give a semantical analy-
sis of which variable it is that was actually accessed. Even though
the aforementioned tools do not require code instrumentation,
they require a recompilation of the sources to include custom
debugging information, hence requiring the source code to be pres-
ent. Though it is possible to use Valgrind without recompilation,
this means that the information can only be tied to the specific
executable, and not to the source code or the variables therein. A
framework that is able to perform link-time program transforma-
tions and instrumentation is presented in Put et al. (2005). The
main target of that work is code-size reduction.

In Eeckhout et al. (2003) the authors explain how to choose in-
put data sets to conduct the profiling phase of the development of
a microprocessor in an efficient manner, by reducing the number of



Download English Version:

https://daneshyari.com/en/article/460071

Download Persian Version:

https://daneshyari.com/article/460071

Daneshyari.com


https://daneshyari.com/en/article/460071
https://daneshyari.com/article/460071
https://daneshyari.com

