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Tri-additive form We determine the structure of tri-additive forms that are homo-

ﬁgg](;%f:neous geneous of degree 3. One of the keys to this investigation is to find
S A the general solution of the functional equation

econd order derivation

Tri-linear 3

Symmetric F(t) +t°G(1/t) =0,

whereF : K — Kisadditiveand G : K — K is quadratic. It is shown
that T is not necessarily tri-linear, even if it is supposed in addition
that T is symmetric.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a (commutative) field, and let V be a vector space over K. A bi-additive form on V is a map
of V x V into K that is additive in each of its two vector variables. Letn € N.Amapf : V — K is
homogeneous of degree n if f(Ax) = A"f(x) forall L € K, x € V.
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Gleason [2] determined all functionals Q on K-vector spaces such that Q obeys the parallelogram
lawQ(x +y) + Q(x —y) = 2Q(x) + 2Q(y) and is homogeneous of degree 2. There is a one-to-one
correspondence between functionals Q satisfying the parallelogram law and symmetric bi-additive
forms S that is provided by Q(x) = S(x, x) and 4S(x,y) = Q(X +y) — Q(X — y). Thus the result of
Gleason could be framed in terms of symmetric bi-additive forms that are homogeneous of degree 2.
There are many other related results, descriptions of which can be found in [4,5,1] and their references.

Our purpose in this paper is to seek similar results when the degrees of additivity and homogeneity
are raised to 3. A tri-additive form on V isamap of V x V x V into K that is additive in each of its three
variables. We investigate the structure of tri-additive forms that are homogeneous of degree 3. We do
not suppose that our tri-additive forms are symmetric.

One of the keys to this investigation is to find the general solution of the functional equation

F(t) + £G(1/t) = 0, (1)

where F : K — K is additive and G : K — K is quadratic. We assume throughout that K is of
characteristic different from 2, and eventually we will exclude characteristic 3 as well. We find that
derivations and second order derivations play an important role in the structure of homogeneous
tri-additive forms.

Let R be a commutative ring. A (first order) derivation is an additive map A from R into itself which
satisfies also A(xy) = xA(y) + yA(x), or equivalently A(x?) = 2xA(x). Amap D : R — Ris called a
second order derivation if D is additive and satisfies

D(xyz) = xD(yz) + yD(xz) + zD(xy) — [xyD(z) + xzD(y) + yzD(x)]
forall x, y, z € R. Clearly, D(1) = 0 follows if R has a unity 1.

2. General solution of Eq. (1)

Lemma 2.1. If additive F and quadratic G satisfy (1), then there exists an additive map A : K — K such

that
F(t) = 2A(t) — 3tA(1), (2)
G(t) = 3t2A(1) — 263A(t ™), 3)
and
A(£?) — 3tA(t) + 3t%A(1) — A = 0. (4)
Moreover the unique symmetric bi-additive form S associated with G is given by
S(t, u) = 3tA(u) + 3uA(t) — 2A(tu) — 3tuA(1). (5)

Proof. We begin with the simple algebraic identity

A= 'a-w'-a-0'=0-0 w0 -y '+u@—-uwt,
valid for all t, u # 1 in K. Applying F to this identity we get

F(A=0'0—w™ ™) =Fa -0 =F( -0 '@ —uw)™") + Fu@ —uw)™),
which by (1) yields

1-070—w 61— —u) — (1 —-0)7°G(1 — 1)
=(1-02r0 —w) 36—t w1 —u) + >0 —uw) 26 (1 —u)

forall t, u # 0, 1. Multiplying by (1 — £)3(1 — u)> we get
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