
BitDew: A data management and distribution service with multi-protocol file
transfer and metadata abstraction

Gilles Fedak a,b,�, Haiwu He a,b, Franck Cappello a,b

a INRIA Saclay, Grand-Large, Orsay, F-91893, France
b LRI, Univ Paris-Sud, CNRS, Orsay, F-91405, France

a r t i c l e i n f o

Article history:

Received 5 November 2008

Received in revised form

1 April 2009

Accepted 3 April 2009

Keywords:

Content network

P2P

Cloud computing

Desktop Grid

a b s t r a c t

Desktop Grids use the computing, network and storage resources from idle desktop PCs distributed over

multiple-LANs or the Internet to compute a large variety of resource-demanding distributed

applications. While these applications need to access, compute, store and circulate large volumes of

data, little attention has been paid to data management in such large-scale, dynamic, heterogeneous,

volatile and highly distributed Grids. In most cases, data management relies on ad hoc solutions, and

providing a general approach is still a challenging issue. A new class of data management service is

desirable to deal with such a variety of file transfer protocols than client/server, P2P or the new and

emerging Cloud storage service.

To address this problem, we propose the BitDew framework, a programmable environment for

automatic and transparent data management on computational Desktop Grids. This paper describes the

BitDew programming interface, its architecture, and the performance evaluation of its runtime

components. BitDew relies on a specific set of metadata to drive key data management operations,

namely life cycle, distribution, placement, replication and fault tolerance with a high level of

abstraction. The BitDew runtime environment is a flexible distributed service architecture that

integrates modular P2P components such as DHTs (Distributed Hash Tables) for a Distributed Data

Catalog and collaborative transport protocols for data distribution. We explain how to plug-in new or

existing protocols and we give evidence of the versatility of the framework by implementing HTTP, FTP

and BitTorrent protocols and access to the Amazon S3 and IBP Wide Area Storage. We describe the

mechanisms used to provide asynchronous and reliable multi-protocols transfers. Through several

examples, we describe how application programmers and BitDew users can exploit BitDew’s features.

We report on performance evaluation using micro-benchmarks, various usage scenarios and data-

intense bioinformatics application, both in the Grid context and on the Internet. The performance

evaluation demonstrates that the high level of abstraction and transparency is obtained with a

reasonable overhead, while offering the benefit of scalability, performance and fault tolerance with little

programming cost.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Enabling Data Grids are one of the fundamental efforts of the
computational science community as emphasized by projects
such as EGEE (Enabling Grids for E-Science in Europe) and PPDG
(PPDG, 2006). This effort is pushed by the new requirements
of e-Science. That is, large communities of researchers collaborate
to extract knowledge and information from huge amounts of
scientific data. This has lead to the emergence of a new class of
applications, called data-intensive applications which require

secure and coordinated access to large data sets, wide-area
transfers and broad distribution of TeraBytes of data while
keeping track of multiple data replicas. The Data Grid aims at
providing such an infrastructure and services to enable data-
intensive applications.

Our project, BitDew1 (Fedak et al., 2008a, b), targets not only
traditional Grids (which connect computational and storage
resources usually at universities or enterprises through virtual
organizations), but also a specific class of Grids called Desktop
Grids. Desktop Grids use computing, network and storage
resources of idle desktop PCs distributed over multiple LANs or
the Internet. Today, this type of computing platform forms one of

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jnca.2009.04.002

� Corresponding author at: INRIA Saclay, Grand-Large, Orsay, F-91893, France.

E-mail addresses: gilles.fedak@inria.fr (G. Fedak), haiwu.he@inria.fr (H. He),

fci@lri.fr (F. Cappello). 1 BitDew can be found at http://www.bitdew.net under GPL license.

Journal of Network and Computer Applications 32 (2009) 961–975

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2009.04.002
mailto:gilles.fedak@inria.fr
mailto:haiwu.he@inria.fr
mailto:fci@lri.fr
http://www.bitdew.net


the largest distributed computing systems, and currently provides
scientists with tens of TeraFLOPS from hundreds of thousands of
hosts. Despite the attractiveness of this platform, little work has
been done to support data-intensive applications in this context
of massively distributed, volatile, heterogeneous, and network-
limited resources. Most Desktop Grid systems, like BOINC
(Anderson, 2004), XtremWeb (Fedak et al., 2001), Condor (Litzkow
et al., 1988) and OurGrid (Cirne et al., 2006) rely on a centralized
architecture for indexing and distributing the data, and thus
potentially face issues with scalability and fault tolerance.

However, we believe that the basic blocks for building BitDew
can be found in P2P systems. Researchers of DHTs (Distributed
Hash Tables) (Stoica et al., 2001; Maymounkov and Mazires, 2002;
Rowstron and Druschel, 2001) and collaborative data distribution
(Cohen, 2003; Gkantsidis and Rodriguez, 2005; Fernandess and
Malkhi, 2006), storage over volatile resources (Adya et al., 2002;
Butt et al., 2004; Vazhkudai et al., 2005), wide-area network
storage (Bassi et al., 2002; Kubiatowicz et al., 2000) and Cloud
computing (Amazon web services) offer various tools that could
be of interest for Data Grids. To build Data Grids from and to
utilize them effectively, one needs to bring together these
components into a comprehensive framework. BitDew suits this
purpose by providing an environment for data management and
distribution in Desktop Grids.

BitDew is a subsystem which could be easily integrated into
other Desktop Grid systems. It offers programmers (or an
automated agent that works on behalf of the user) a simple API
for creating, accessing, storing and moving data with ease, even on
highly dynamic and volatile environments.

BitDew leverages the use of metadata, a technique widely used
in Data Grid (Jin et al., 2006), but in more directive style. We
define five different types of metadata: (i) REPLICATION indicates how
many occurrences of data should be available at the same time in
the system, (ii) FAULT TOLERANCE controls the resilience of data in
presence of machine crash, (iii) LIFETIME is a duration, absolute or
relative to the existence of other data, which indicates when a
datum is obsolete, (iv) AFFINITY drives movement of data according
to dependency rules, (v) TRANSFER PROTOCOL gives the runtime
environment hints about the file transfer protocol appropriate to
distribute the data. Programmers tag each data with these simple
attributes, and simply let the BitDew runtime environment
manage operations of data creation, deletion, movement, replica-
tion, as well as fault tolerance.

The BitDew runtime environment is a flexible environment
implementing the APIs. It relies either on centralized or and
distributed protocols for indexing, storage and transfers providing
reliability, scalability and high performance. In this paper, we
present the architecture of the prototype, and we describe in
depth the various mechanisms used to provide asynchronous,
asynchronous and multi-protocol file transfers. We give several
examples of protocol integration: client/server such as HTTP and
FTP, P2P or collaborative content delivery such as BitTorrent, and
Wide Area Storage such as IBP or Amazon S3. We also provide
detailed quantitative evaluation of the runtime environment on
two environments: the GRID5000 experimental Grid platform,
and DSL-Lab, an experimental platform over broadband ADSL.

Through a set of micro-benchmarks, we measure the costs
and benefits, components by components, of the underlying
infrastructures. We run communication benchmark in order to
evaluate the overhead of the BitDew protocol when transferring
files and we assess fault-tolerant capabilities. And finally we show
how to program a master/worker application with BitDew and we
evaluate its performance in a real world Grid deployment.

The rest of the paper is organized as follows. Section 2 presents
the background of our researches. In Section 3, we present the API
and the runtime environment of BitDew. Then in Section 4, we

conduct performance evaluation of our prototype, and Section 5
presents a master/worker application. Finally we present related
work in Section 6 and we conclude the paper in Section 7.

In this section we overview Desktop Grids characteristics and
data-intensive application requirements. Following this analysis,
we give the required features of BitDew.

1.1. Desktop Grids characteristics

Desktop Grids are composed of a large set of personal
computers that belong both to institutions, for instance an
enterprise or a university, and to individuals. In the former case,
these home PCs are volunteered by participants who donate a part
of their computing capacities to some public projects. However,
several key characteristics differentiate DG resources from tradi-
tional Grid resources: (i) performance; mainstream PCs have no
reliable storage and potentially poor communication links, (ii)
volatility; PCs can join and leave the network at any time and
appear with several identities, (iii) resources are shared between
their users and the Desktop Grid applications, (iv) resources are
scattered across administrative domains with a wide variety of
security mechanisms ranging from personal routers/firewalls to
large-scale PKI infrastructures.

Because of these constraints, even the simplest data adminis-
tration tasks, are difficult to achieve on a Desktop Grid. For
instance, to deploy a new application on a cluster, it is sufficient to
copy the binary file on a network file server shared by the cluster
nodes. After a computation, cluster users usually clean the storage
space on the cluster nodes simply by logging remotely to each of
the compute nodes and by deleting recursively the temporary files
or directories created by the application. By contrast, none of the
existing Desktop Grids systems allows such tasks to be performed
because: (i) a shared file system would be troublesome to setup
because of hosts connectivity and volatility and volunteers churn,
and (ii) remote access to participant’s local file system is
forbidden in order to protect volunteer’s security and privacy.

1.2. Requirements to enable data-intensive application on Desktop

Grids

Currently, Desktop Grids are mostly limited to embarrassingly
parallel applications with few data dependencies. In order to
broaden the use of Desktop Grids we examine several challenging
applications and outline their needs in terms of data manage-
ment. From this survey, we will deduce the features expected
from BitDew.

Parameter-sweep applications composed of a large set of
independent tasks sharing large data are the first class of
applications which can benefit from BitDew. Large data move-
ment across wide-area networks can be costly in terms of
performance because bandwidth across the Internet is often
limited, variable and unpredictable. Caching data on local work-
station storage (Iamnitchi et al., 2006; Otoo et al., 2004;
Vazhkudai et al., 2005) with adequate scheduling strategies
(Santos-Neto et al., 2004; Wei et al., 2005) to minimize data
transfers can improve overall application execution performance.

Moreover, the work in Iamnitchi et al. (2006) showed that
data-intensive applications in high energy physics tend to access
data in groups of files called ‘‘filecules’’. For these types of
applications, replication of groups of files over a large set of
resources is essential to achieve good performance. If data are
replicated and cached on local storage of computing resources,
one should provide transparent fault-tolerance operation on data.

In a previous work (Wei et al., 2005), we have shown that using
a collaborative data distribution protocol BitTorrent over FTP can

ARTICLE IN PRESS

G. Fedak et al. / Journal of Network and Computer Applications 32 (2009) 961–975962



Download English Version:

https://daneshyari.com/en/article/460075

Download Persian Version:

https://daneshyari.com/article/460075

Daneshyari.com

https://daneshyari.com/en/article/460075
https://daneshyari.com/article/460075
https://daneshyari.com

