On the continuity of the generalized spectral radius in max algebra

Aljoša Peperko*
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia

ARTICLEINFO

Article history:

Received 23 July 2010
Accepted 5 February 2011
Available online 26 February 2011
Submitted by L. Elsner
AMS classification:
15A18
15A48
15A60

Keywords:

Maximum circuit geometric mean
Max algebra
Non-negative matrices
Generalized spectral radius
Joint spectral radius
Continuity
Hausdorff metric
Hadamard powers
Schur powers

Abstract

Given a bounded set Ψ of $n \times n$ non-negative matrices, let $\rho(\Psi)$ and $\mu(\Psi)$ denote the generalized spectral radius of Ψ and its max version, respectively. We show that $$
\mu(\Psi)=\sup _{t \in(0, \infty)}\left(n^{-1} \rho\left(\Psi^{(t)}\right)\right)^{1 / t},
$$ where $\Psi^{(t)}$ denotes the Hadamard power of Ψ. We apply this result to give a new short proof of a known fact that $\mu(\Psi)$ is continuous on the Hausdorff metric space (β, H) of all nonempty compact collections of $n \times n$ non-negative matrices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The algebraic system max algebra and its isomorphic versions provide an attractive way of describing a class of non-linear problems appearing for instance in manufacturing and transportation scheduling, information technology, discrete event-dynamic systems, combinatorial optimisation, mathematical physics, DNA analysis, ...(see e.g. [8,1,2,7,3,21,28]). Max algebra's usefulness arises from a fact that these non-linear problems become linear when described in the max algebra language.

[^0]0024-3795/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2011.02.015

Following the notation from [2,10,23,24,17], the max algebra consists of the set of non-negative numbers with sum $a \oplus b=\max \{a, b\}$ and the standard product $a b$, where $a, b \geq 0$. Let $A=\left[a_{i j}\right]$ be a $n \times n$ non-negative matrix, i.e., $a_{i j} \geq 0$ for all $i, j=1, \ldots, n$. We may denote $a_{i j}$ also by $[A]_{i j}$. Let $\mathbb{R}^{n \times n}$ be the set of all $n \times n$ real matrices and $\mathbb{R}_{+}^{n \times n}$ the set of all $n \times n$ non-negative matrices. The operations between matrices and vectors in the max algebra are defined by analogy with the usual linear algebra. For instance, the product of $A, B \in \mathbb{R}_{+}^{n \times n}$ in the max algebra is denoted by $A \otimes B$, where $[A \otimes B]_{i j}=\max _{k=1, \ldots, n} a_{i k} b_{k j}$. The notation A_{\otimes}^{2} means $A \otimes A$, and A_{\otimes}^{k} denotes the k-th max power of A. If $x=\left[x_{i}\right] \in \mathbb{R}^{n}$ is a non-negative vector, then the notation $A \otimes x$ means $[A \otimes x]_{i}=\max _{j=1, \ldots, n} a_{i j} x_{j}$. The usual associative and distributive laws hold in this algebra. Note that the standard products are denoted by $A B$ and $A x$.

The weighted directed graph $\mathcal{D}(A)$ associated with A has a vertex set $\{1,2, \ldots, n\}$ and edges (i, j) from a vertex i to a vertex j with weight $a_{i j}$ if and only if $a_{i j}>0$. A path of length k is a sequence of edges $\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{k}, i_{k+1}\right)$. A circuit of length k is a path with $i_{k+1}=i_{1}$, where $i_{1}, i_{2}, \ldots, i_{k}$ are distinct. Associated with this circuit is the circuit geometric mean known as $\left(a_{i_{1} i_{2}} a_{i_{2} i_{3}} \ldots a_{i k i 1}\right)^{1 / k}$. The maximum circuit geometric mean in $\mathcal{D}(A)$ is denoted by $\mu(A)$. Note that circuits $\left(i_{1}, i_{1}\right)$ of length 1 (loops) are included here and that we also consider empty circuits, i.e., circuits that consist of only one vertex and have length 0 . For empty circuits, the associated circuit geometric mean is zero.

There are many different descriptions of the maximum circuit geometric mean $\mu(A)$ (see e.g. [13, $14,9,20$, p. 366,3 , p. $130,10,27,25,30,29,16]$). It was proved in [14] that given $A \in \mathbb{R}_{+}^{n \times n}$

$$
\begin{equation*}
\mu(A)=\lim _{t \rightarrow \infty} \rho\left(A^{(t)}\right)^{1 / t} \tag{1}
\end{equation*}
$$

where $A^{(t)}=\left[a_{i j}^{t}\right]$ is a Hadamard (or also Schur) power of A and ρ the spectral radius. Alternative and simplified proofs of (1) can be found in [9,20, p. 366,3, p. 130,10,30]. We also have

$$
\begin{equation*}
\mu(A) \leq \rho(A) \leq n \mu(A) \tag{2}
\end{equation*}
$$

(see e.g. [9,20, p. 366,22,23,30]).
It is known that $\mu(A)$ is the largest max eigenvalue of A. Moreover, if A is irreducible, then $\mu(A)$ is the unique max eigenvalue and every max eigenvector is positive (see [2, Theorem 2] and [22, Theorem 1]). We also have

$$
\begin{equation*}
\mu(A)=\lim _{k \rightarrow \infty}\left\|A_{\otimes}^{k}\right\|^{1 / k} \tag{3}
\end{equation*}
$$

for an arbitrary vector norm $\|\cdot\|$ on $\mathbb{R}^{n \times n}$ (see [10, Lemma 4.1,22,23,30]).
Given an irreducible non-negative matrix A, algorithms for computing $\mu(A)$ and the max eigenvector x were established in [10-12]. On the other hand, infinite-dimensional generalizations of μ can be found in [27,25,29].

Let Σ be a bounded set of $n \times n$ complex matrices. For $m \geq 1$, let

$$
\Sigma^{m}=\left\{A_{1} A_{2} \cdots A_{m}: A_{i} \in \Sigma\right\} .
$$

The generalized spectral radius of Σ is defined by

$$
\begin{equation*}
\rho(\Sigma)=\limsup _{m \rightarrow \infty}\left[\sup _{A \in \Sigma^{m}} \rho(A)\right]^{1 / m} . \tag{4}
\end{equation*}
$$

It was shown in [5] that $\rho(\Sigma)$ is equal to the joint spectral radius of Σ, i.e.,

$$
\begin{equation*}
\rho(\Sigma)=\lim _{m \rightarrow \infty}\left[\sup _{A \in \Sigma^{m}}\|A\|\right]^{1 / m}, \tag{5}
\end{equation*}
$$

where $\|\cdot\|$ is any vector norm on $\mathbb{C}^{n \times n}$. This equality is called the Berger-Wang formula or also the generalized spectral radius theorem. Since then many different type of proofs of (5) were obtained

https://daneshyari.com/en/article/4601420

Download Persian Version:
https://daneshyari.com/article/4601420

Daneshyari.com

[^0]: * Address: Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia

 E-mail address: aljosa.peperko@fmf.uni-lj.si

