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In this paper we prove that every nonlinear Lie derivation of trian-

gular algebras is the sum of an additive derivation and a map into

its center sending commutators to zero.
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1. Introduction

Let A and B be unital algebras over a commutative ring R, and let M be a unital (A,B)-bimodule,

which is faithful as a left A-module and also as a right B-module. Recall that a left A-module M is

faithful if a ∈ A and aM = 0 implies that a = 0. The R-algebra

U = Tri(A,M,B) =
{(

a m

0 b

)
: a ∈ A, m ∈ M, b ∈ B

}
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under the usual matrix operations is called a triangular algebra. The most important examples of tri-

angular algebras are upper triangularmatrix algebras, block upper triangularmatrix algebras and nest

algebras. Cheung [4,5] described commutingmaps and Lie derivations of these algebras. Benkovič and

Eremita [2] studied commuting traces of biadditivemaps and Lie isomorphisms of triangular algebras.

Benkovič [3] investigated biderivations of triangular algebras.Wong [19] treated Jordan isomorphisms

of triangular algebras, while Zhang and Yu [20] studied Jordan derivations.

Let A be an algebra on a commutative ring R. A map δ : A → A is called an additive derivation

if it is additive and satisfies δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A. If there exists an element a ∈ A
such that δ(x) = [x, a] for all x ∈ A, where [x, a] = xa − ax is the Lie product or the commutator of

the elements x, a ∈ A, then δ is said to be an inner derivation. Let ϕ : A → A be a map (without the

additivity assumption). We say that ϕ is a nonlinear Lie derivation if ϕ([x, y]) = [ϕ(x), y] + [x,ϕ(y)]
for all x, y ∈ A.

The structure of additive or linear Lie derivations on rings or algebras has been studied by many

authors. For example, see [1,11,13–18,21] and their references. Recently, ChengandZhang [6] described

nonlinear Liederivationsofupper triangularmatrix algebras. In thispaperwewill investigatenonlinear

Lie derivations of triangular algebras.

2. Main result

LetU = Tri(A,M,B)bea triangular algebra and letZ(U)be its centre. It follows from[4, Proposition

3] that

Z(U) =
{(

a 0

0 b

)
: am = mb for allm ∈ M

}
. (1)

Let us define two natural projections πA : U → A and πB : U → B by

πA :
(
a m

0 b

)
�→ a and πB :

(
a m

0 b

)
�→ b.

Then πA(Z(U)) ⊆ Z(A) and πB(Z(U)) ⊆ Z(B), and there exists a unique algebra isomorphism τ :
πA(Z(U)) → πB(Z(U)) such that am = mτ(a) for allm ∈ M.

Let 1A and 1B be identities of the algebras A and B, respectively, and let 1 be the identity of the

triangular algebra U . Throughout this paper we shall use following notation:

e1 =
(
1A 0

0 0

)
, e2 = 1 − e1 =

(
0 0

0 1B

)

and

Uij = eiUej for 1� i � j � 2.

It is clear that the triangular algebra U may be represented as

U = e1Ue1 + e1Ue2 + e2Ue2 = U11 + U12 + U22. (2)

Here U11 and U22 are subalgebras of U isomorphic to A and B, respectively, and U12 ⊆ U is a (U11, U22)-

bimodule isomorphic to the bimodule M. We also see thatπA(Z(U)) andπB(Z(U)) are isomorphic to

e1Z(U)e1 and e2Z(U)e2, respectively. Then there is an algebra isomorphism σ : e1Z(U)e1 → e2Z(U)e2
such that am = mσ(a) for allm ∈ U12.

In this section, we will prove the following theorem.

Theorem 2.1. Let U = Tri(A,M,B) be a triangular algebra and let ϕ : U → U be a nonlinear Lie

derivation. If πA(Z(U)) = Z(A) and πB(Z(U)) = Z(B), then ϕ is the sum of an additive derivation and

a map into its center Z(U) sending each commutator to zero.

NextweassumethatU = Tri(A,M,B) is a triangularalgebrawithπA(Z(U)) = Z(A)andπB(Z(U))= Z(B), and that ϕ : U → U is a nonlinear Lie derivation. From Eq. (1), we have the following lemma.

Lemma 2.1. Let x ∈ U. Then x ∈ U12 + Z(U) if and only if [x, m] = 0 for all m ∈ U12.
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