

Contents lists available at ScienceDirect

Linear Algebra and its Applications

Some constructions of linearly optimal group codes

Elena Couselo ^{a,1}, Santos González ^{a,1}, Victor Markov ^{b,2}, Consuelo Martínez ^{a,1,*}, Alexander Nechaev ^{b,2}

ARTICLE INFO

Article history: Received 2 March 2009 Accepted 25 February 2010 Available online 3 April 2010

Submitted by R.A. Brualdi

AMS classification:

94B05

94B15

94B60

Keywords: Linearly optimal code Reed-Solomon code

94B65

Group code

Group ring

ABSTRACT

We continue here the research on (quasi)group codes over (quasi)group rings. We give some constructions of $[n, n-3, 3]_a$ codes over \mathbb{F}_q for n=2q and n=3q. These codes are linearly optimal, i.e. have maximal dimension among linear codes having a given length and distance. Although codes with such parameters are known, our main results state that we can construct such codes as (left) group codes. In the paper we use a construction of Reed–Solomon codes as ideals of the group ring $\mathbb{F}_a G$ where G is an elementary abelian group of order q.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We will extensively use some notions related to group rings. We refer the reader to [4, Appendix 2].

(Quasi-)group codes over a finite ring R are linear codes obtained from left ideals of a (quasi-)group ring A = RG of a finite (quasi-)group G in the following way. Let $G = \{g_1, \dots, g_n\}$ and $I \leq_A A$ be a left

a Department of Mathematics, University of Oviedo, Spain

^b Center of New Information Technologies of Moscow State University, Russia

Corresponding author.

E-mail address: cmartinez@uniovi.es (C. Martínez).

¹ Partially supported by Grant MTM2007-67884-C04-01 and IB-08-147.

² This work was supported by the grants of the President of RF: SS-4.2008.10, SS-1983.2008.1, and by the Grant of RFFR: 08-01-00693-a, 02-01-00687. V. Markov and A. Nechaev thank also Oviedo University for the hospitality.

ideal of A. Then the set $\mathcal{K} = \mathcal{K}(I)$ of all words $(r_1, \ldots, r_n) \in R^n$ such that $\sum r_i g_i \in I$ is a linear n-code over the ring R, i.e. a submodule of the module ${}_RR^n$. Such codes will be also called G-codes over R, and will be said to be contained in the group ring. Moreover, a left ideal $I \leq {}_AA$ will be identified with the code $\mathcal{K}(I)$ and, for shortness, we will say that I is an $[n, k, d]_q$ -code to mean that $\mathcal{K}(I)$ is a code of length n, cardinality q^k and code distance d. This identification allows to define for every $x = \sum r_i g_i \in A$ its Hamming weight $\|x\|$ by $\|x\| = \|(r_1, \ldots, r_n)\|$.

There are many results about such codes in the case $R = \mathbb{F}$ a finite field and G an abelian group (mainly a cyclic group with order coprime to $|\mathbb{F}|$) see e.g. [8,3]. In the case of non-abelian groups there are some results in [9–11], where ideals of a semisimple \mathbb{F} -algebra $\mathbb{F}G$ were considered.

Let us notice that codes considered in this paper sometimes are referred as left group codes, using the name group code when *I* is a two-sided ideal of the group algebra.

A natural and first step in the research of loop-codes is the computation of parameters for all possible codes $\mathcal{K} = \mathcal{K}(I)$ and left ideals I of loop-algebras $\mathbb{F}G$ of small orders and to search for the best codes among them. This was carried out in [2].

Following [3], a (generally nonlinear) [n,k,d]-code $C\subseteq \mathbb{F}_q^n$ is said to be *optimal* if $|C|=q^k$ is maximal among sizes of all possible n-codes with a given distance d. Remind that any code C satisfies the inequality $k \le n-d+1$ (Singleton bound) and the code C is called MDS-code if k=n-d+1. Evidently, any MDS-code is optimal.

For any quasi-group ring A = RG there is an important example of a linked quasigroup MDS-code: its *fundamental ideal*

$$\Delta(A) = \left\{ \sum_{g \in G} r(g)g : \sum_{g \in G} r(g) = 0 \right\}. \tag{1}$$

The fundamental ideal $\Delta(A)$ is an [n, n-1, 2]-code and can be described also as the R-submodule of A spanned by all differences e-g, $g \in G$.

According to the definition of optimal code we will say that a linear $[n, k, d]_q$ -code over a field \mathbb{F}_q is linearly optimal if k is the maximum of the dimensions of all \mathbb{F}_q -linear n-codes with a fixed distance d.

Let n(k,q) (resp. m(k,q)) be the maximal length of all MDS-codes C with combinatorial dimension $k = \log_q |C|$ over an alphabet of q elements (resp., for a primary q, the maximal length of all linear MDS codes over the field \mathbb{F}_q). Clearly $m(k,q) \leq n(k,q)$.

The following simple remark helps to prove that some codes are linearly optimal.

Proposition 1.1 (see [2]). Let n, k, q be natural numbers, q primary, such that

$$n > m(k + 1, q)$$
.

Then any \mathbb{F}_q -linear $[n, k, n-k]_q$ -code is linearly optimal.

Indeed, in other case there exists a linear $[n, k+1, n-k]_q$ -code. But it is an MDS-code. So $n \le m(k+1, q)$. This is a contradiction.

Corollary 1.2. Any linear $[tq, tq - 3, 3]_q$ code for $t \ge 2$ is linearly optimal.

Proof. If
$$q \le k$$
 then $n(k, q) = k + 1$ by [3]. Now for $k = tq - 3 \ge q - 1$ we have

$$m(k+1,q) = m(tq-2,q) \le n(tq-2,q) = tq-1 < tq$$
.

In this paper we will give constructions of $[tq, tq - 3, 3]_q$ group codes over \mathbb{F}_q for t = 2 and t = 3. Linear algebra technics will play a key role in the proofs of our results.

Let us note that linear $[n, n-3, 3]_q$ -codes over \mathbb{F}_q can be easily constructed as a shortcut Hamming [N, N-3, 3]-code for $N=q^2+q+1$ [1]. Our main results state that we can construct such codes as group codes over \mathbb{F}_q .

Download English Version:

https://daneshyari.com/en/article/4601786

Download Persian Version:

https://daneshyari.com/article/4601786

Daneshyari.com