
A novel fault-tolerant execution model by using of mobile agents$

Wenyu Qu a,b,�, Masaru Kitsuregawa b, Hong Shen c, Zhiguang Shan d

a School of Computer Science and Technology, Dalian Maritime University, 1 Linghai Road, Ganjingzi, Dalian 116026, China
b Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
c School of Computer Science, University of Adelaide, SA 5005, Australia
d Department of Informatization Research, State Information Center, Beijing 100045, China

a r t i c l e i n f o

Article history:

Accepted 20 February 2008

Keywords:

Mobile agents

Migration time

Life expectancy

Population distribution

a b s t r a c t

The exponential expansion of the Internet and the widespread popularity of the World Wide Web give a

challenge to experts on reliable and secure system design, e.g., e-economy applications. New paradigms

are on demand and mobile agent technology is one of the features. In this paper, we propose a fault-

tolerance execution model by using of mobile agents, for the purpose of consistent and correct

performance with a required function under stated conditions for a specified period of time. Failures are

classified into two classes based on their intrinsic different effects on mobile agents. For each kind of

failure, a specified handling method is adopted. The introduction of exceptional handling method allows

performance improvements during mobile agents’ execution. The behaviors of mobile agents are

statistically analyzed through several key parameters, including the migration time from node to node,

the life expectancy of mobile agents, and the population distribution of mobile agents, to evaluate the

performance of our model. The analytical results give new theoretical insights to the fault-tolerant

execution of mobile agents and show that our model outperforms the existing fault-tolerant models.

Our model provides an effective way to improve the reliability of computer systems.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the far-reaching significance of the Internet and dramatic
advances in computer technology, computers are no longer
isolated computational machines. People communicate with the
outer world through wireless networks, LANs, and the Internet.
The exponential expansion of the Internet and the widespread
popularity of the World Wide Web increase the difficulty of
designing reliable and secure systems. New techniques are
demanded to facilitate this trend and many researches have been
conducted. For example, Li and Shen (2004a, b, 2005) and Li et al.
(2005) paid efforts to improve network service efficiency for
multimedia applications. As we know, any component (hardware
or software) in a network may fail (malicious or not), thus
preventing the system from consistently and correctly performing
with a required function under stated conditions for a specified
period of time. This paper focuses on crash failures (i.e., processes
prematurely halt). Benign and malicious failures (e.e., Byzantine
failures) (Pleisch and Schiper, 2003) are not discussed.

Fault tolerance is the property that enables a system (often
computer-based) to continue operating properly in the event of

the failure of (or one or more faults within) some of its
components (http://en.wikipedia.org/wiki/Fault-tolerant_system,
2007). The basic characteristics of fault tolerance require no single
point of failure or repair, fault isolation to the failing component,
fault containment to prevent propagation of the failure, and
availability of reversion modes. Existing fault-tolerant techniques
can be roughly classified into two kinds: replication and
checkpointing. Replication approach (Lyu and Wong, 2003) uses
replicated servers to mask the failures. When one server is down,
the computation still continues by using the results from other
servers. However, this approach requires multiple servers at each
stage, even when no failure occur; these redundant servers add an
overhead to the communication between servers to guarantee the
consistent execution, especially when they are widely separated.
Checkpointing (Park et al., 2002), on the other hand, saves the
intermediate execution into a stable storage so that the execution
can be resumed in case of a failure. Although the communication
cost for replication is avoided, the execution may be prevented
even by a single failure. Besides, the occupied storage spaces are
locked until the user requirement has been entirely completed at
the destination node. Unlocking storages requires additional
messages sent to all nodes of the itinerary.

In this paper, we propose a new fault-tolerant execution model
based on a combination of the replication approach and the
checkpointing approach by using of mobile agents. Our model
reduced the redundant communications between nodes where
there is no failure occurred. Theoretical analysis of migration

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jnca.2008.02.008

$ This work is supported by the National Natural Science Foundation of China

(90718030 and 60673054).
� Corresponding author at: School of Computer Science and Technology, Dalian

Maritime University, 1 Linghai Road, Ganjingzi, Dalian 116026, China.

E-mail address: keqiu@dlut.edu.cn (W. Qu).

Journal of Network and Computer Applications 32 (2009) 423– 432

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2008.02.008
mailto:keqiu@dlut.edu.cn


time,1 life expectancy,2 and population distribution3 of mobile
agents are given for our model. Our approach exploits a new way
to design cost-effective fault-tolerant agent-driven systems. Our
analysis reveals new theoretical insights into the statistical
behaviors of mobile agents and provides useful tools for
effectively estimating the performance of agent-driven systems.

The main contributions of this paper are summarized as
follows:

� We proposed a new fault-tolerant execution model which
effectively combines available techniques. In our model, fail-
ures are classified into two classes based on their intrinsic
different effects on mobile agents. For each kind of failure, an
exceptional handling method is adopted. Our model greatly
decreases network resources consumption and improves the
overall network performance. It achieves better cost-effective-
ness than existing models.
� We applied stochastic process to analyze the behaviors of

mobile agents in fault-tolerant execution, which exploits a new
approach to assessing the performance of agent-based sys-
tems. For the first time, to the best of our knowledge, the
behaviors of mobile agents in networks that may contain faults
are statistically analyzed in a quantitative way.
� We analyzed several key parameters which dominate the

behaviors of mobile agents, including the migration time, the
life expectancy, and the population distribution, in great
theoretical depth. Our analysis provides a useful way of
controlling mobile agents’ behaviors by tuning relevant
parameters according to various system characteristics.

The remainder of this paper is structured as follows. Section 2
reviews fault-tolerant approaches that utilize either replication or
checkpointing. Section 3 presents our model. Section 4 analyzes
the migration time, the life expectancy, and the population
distribution. presents some discussion on the case that the
network is reliable. Finally, Section 5 presents our experimental
results, and Section 6 gives our conclusion remarks.

2. Related work

Mobile agent is one such paradigm for building distributed
systems which has drawn a lot of attention in both academia and
industry. The use of mobile agents can be found in various areas
(Kotz and Gray, 1999), such as electronic commerce (He et al.,
2003; Maes et al., 1999), network management (Bieszczad et al.,
1998; Du et al., 2003), and information retrieval (Bergadano et al.,
1999; Theilmann and Rothermel, 2000). As defined in Milojicic
(1999), mobile agents are executing software entities that are
capable of migrating from node to node in heterogeneous
networks on behalf of network users. The key idea underlying
mobile agents is to bring the computation to the data rather than
the data to the computation (Schoder and Eymann, 2000). Lange
and Oshima (1999) concluded that mobile agents can reduce the
network load, overcome network latency, encapsulate protocols,
execute asynchronously and autonomously, and dynamically
adapt to changes. Although some of these strengths can be
realized with combinations of many traditional distributed-
computing techniques, no competing technique shares all of
them (Gray et al., 2000). The merits have led a number of leading
companies and research institutions to develop mobile agent

systems. The existing systems include Ara, D’Agents, Aglets,
Concordia, Gypsy, Mole, JatLite, Voyager and others (Paulino,
2002).

Mobile agents’ ability to react dynamically to unfavorable
situations and events makes it easier to build robust and fault-
tolerant distributed systems Lange and Oshima (1999). Many
mobile agent-based fault-tolerant approaches have been proposed
so far. A brief introduction to proposed approaches following the
same classification of replication vs. checkpointing is given as
follows.

In a replication scheme, an agent is replicated and migrated to
several sites. The replicas must agree on one execution site for
each stage and the redundant execution of other sites must be
undone. For the agreement procedure, a distributed migration
proposed in Vogler et al. (1997) injects an agent replica into stable
storage upon arriving at an agent server. However, if an agent
server crashes, the replica remains unavailable for an unknown
time period. In Johansen et al. (1999), Rothermel and Strasser
(1998) and Straßer and Rothermel (1998), a protocol was
presented that provides the exactly once property in the
migration of mobile agents. Every time an agent wants to migrate,
it is replicated to a set of nodes. In every group of replicas there is
one worker node, which is responsible for the execution of the
agent. The other replica nodes receive a copy of the agent and act
as observers of the worker node. When the worker fails, the
observers will detect it and elect a new worker by running an
election protocol. The elected worker will try to provide the same
service or, if that is not possible, will execute an exception
handling mechanism. In Assis Silva and Popescu-Zeletin (1998) a
protocol was proposed which can be seen as a variation of that
proposed in Rothermel and Strasser (1998). This scheme includes
the distributed storage of recovery information and it used a
three-phase commit protocol. However, the execution of a 3PC
protocol is more expensive and introduces a higher latency. In
Pleisch and Schiper (2000, 2001), the consensus protocol is used;
among the replicas, one, called primary, is initially responsible for
the execution. The priorities of the replicas are predetermined,
hence, a replica takes over the execution, only when all of the
higher priority replicas fail. To detect a possible failure, the time-
out is used in Pals et al. (2000). When a primary does not respond
within a certain time-out period, the first replica broadcasts the
failure of the primary and starts up the agent execution. However,
it is possible that the primary was too slow to respond within the
time-out period, in which case, two agents may have performed
the same execution stage. In Pleisch and Schiper (2003), a
replication model is modeled as a sequence of agreement
problems. This model ensures both non-blocking and exactly
once properties, but it generates multiple replica agents and
introduces a large amount of communication for each hop in the
network, which will certainly consume a certain amount of
network resources.

In the checkpointing scheme, the intermediate states of an
agent are saved into a stable storage periodically, so that the agent
can resume the execution from the most recent saved state after a
crash (Elnozahy et al., 2002; Nicola, 1995). In Walsh et al. (1998),
checkpointing is provided to deal with node failures, but a mobile
agent in this system cannot proceed with its computation until
the failed node recovers and restores the state of the mobile agent
from persistent storage. In Dalmeijer et al. (1998), a checkpoint
manager monitors all the agents inside a cluster of machines and
responds to restart the agents when there is a node failure. In
addition to communication cost, the checkpoint manager can also
be a point of failure. In Johansen et al. (1999), a rear-guard agent is
associated with each agent, to respond by launching a new agent
when a failure causes the first agent to vanish. Again, along with
the communication cost, the checkpoint manager is also a

ARTICLE IN PRESS

1 Migration time refers to the period that a mobile agent migrates from one

node to another.
2 Life expectancy refers to the average life-span of mobile agents.
3 Population refers to the number of mobile agents running in the network.

W. Qu et al. / Journal of Network and Computer Applications 32 (2009) 423–432424



Download English Version:

https://daneshyari.com/en/article/460209

Download Persian Version:

https://daneshyari.com/article/460209

Daneshyari.com

https://daneshyari.com/en/article/460209
https://daneshyari.com/article/460209
https://daneshyari.com

