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We point out a sharp reverse Cauchy–Schwarz/Hölder matrix in-

equality. The Cauchy–Schwarz version involves the usual matrix

geometricmean: LetAi andBi bepositivedefinitematrices such that

0 < mAi � Bi �MAi for some scalars 0 < m�M and i = 1, 2, . . . , n.
Then ⎛
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where the matrix geometric mean of positive definite A and B is

defined by
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1. Introduction

Let ai and bi be positive real numbers, i = 1, 2, . . . , n. The Hölder inequality says that
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for p, q > 1 such that 1
p

+ 1
q

= 1.When p = q = 2 in (1), the Cauchy–Schwarz inequality holds. These

inequalities can be extended to matrices. Let A and B be positive definite matrices. Their geometric

mean is

A � B := A1/2
(
A−1/2BA−1/2

)1/2
A1/2

and a matrix Cauchy–Schwarz inequality for positive definite matrices {Ai}ni=1 and {Bi}ni=1 is:
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also see [6]. In a recent paper [7], Lee obtained a sharp reverse inequality for (2):

Theorem A. Let Ai and Bi be positive definite matrices such that mAi � Bi �MAi for some scalars 0 <
m�M and i = 1, 2, . . . , n. Then⎛

⎝ n∑
i=1

Ai

⎞
⎠ �

⎛
⎝ n∑

i=1

Bi

⎞
⎠�

√
M + √

m

2
4
√

mM

n∑
i=1

Ai � Bi.

A key feature of this statement is the “sandwich assumption” mAi � Bi �MAi. This leads to more

general/precise estimates than simple data of bounds for spectra usually found in the reverse literature,

like σ(Ai) ⊂ [r, s] and σ(Bi) ⊂ [r′, s′] for some r, s, r′, s′ > 0.

Very recently, in order to obtain a reverse matrix Hölder inequality, Bourin et al. [2] extended

Theorem A to weighted geometric means. For α ∈ [0, 1], the weighted geometric mean A �α B of two

positive definite matrices A and B is defined by

A �α B := A1/2
(
A−1/2BA−1/2

)α
A1/2,

so that A �α B = A1−αBα whenever A and B commute. The following inequality, for positive definite

matrices {Ai}ni=1 and {Bi}ni=1, is a matrix version for (1)
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and the main result in [2] is a ratio type reverse statement. In this short note we complete it by a

difference type reverse statement.

2. Reverse Cauchy–Schwarz inequality

We start with a difference type reverse of the matrix Cauchy–Schwarz inequality:

Theorem 1. Let Ai, Bi be positive definite matrices such that mAi � Bi �MAi for some scalars 0 < m�M

and i = 1, 2, . . . , n. Then⎛
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To prove it, we need a well-known lemma. The proof given here is adapted from [1].
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