

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journalhomepage:www.elsevier.com/locate/laa

A difference counterpart to a matrix Hölder inequality

Masatoshi Fujii^a, Eun-Young Lee^b, Yuki Seo^{c,*}

^a Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan

^b Department of Mathematics, Kyungpook National University, Taegu 702-701, Republic of Korea

^c Faculty of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-city, Saitama 337-8570, Japan

ARTICLE INFO

Article history: Received 4 August 2009 Accepted 27 November 2009 Available online 4 January 2010

Submitted by R.A. Brualdi

AMS classification: 15A60 47A30 47A63 47A64

Keywords: Positive definite matrix Geometric mean Positive linear map Specht ratio Relative operator entropy Cauchy-Schwarz inequality Hölder inequality

1. Introduction

Let a_i and b_i be positive real numbers, i = 1, 2, ..., n. The Hölder inequality says that

$$\sum_{i=1}^{n} a_{i}^{\frac{1}{p}} b_{i}^{\frac{1}{q}} \leq \left(\sum_{i=1}^{n} a_{i}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_{i}\right)^{\frac{1}{q}}$$

(1)

* Corresponding author.

E-mail addresses: mfujii@cc.osaka-kyoiku.ac.jp (M. Fujii), eylee89@knu.ac.kr (E.-Y. Lee), yukis@sic.shibaura-it.ac.jp (Y. Seo).

0024-3795/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2009.12.002

ABSTRACT

We point out a sharp reverse Cauchy–Schwarz/Hölder matrix inequality. The Cauchy–Schwarz version involves the usual matrix geometric mean: Let A_i and B_i be positive definite matrices such that $0 < mA_i \leq B_i \leq MA_i$ for some scalars $0 < m \leq M$ and i = 1, 2, ..., n. Then

$$\left(\sum_{i=1}^n A_i\right) \ddagger \left(\sum_{i=1}^n B_i\right) - \sum_{i=1}^n A_i \ddagger B_i \leqslant \frac{\left(\sqrt{M} - \sqrt{m}\right)^2}{4\left(\sqrt{M} + \sqrt{m}\right)} \sum_{i=1}^n A_i,$$

where the matrix geometric mean of positive definite A and B is defined by

$$A \ddagger B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\frac{1}{2}} A^{\frac{1}{2}}.$$

© 2009 Elsevier Inc. All rights reserved.

lications

for p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. When p = q = 2 in (1), the Cauchy–Schwarz inequality holds. These inequalities can be extended to matrices. Let *A* and *B* be positive definite matrices. Their geometric mean is

$$A \ddagger B := A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{1/2} A^{1/2}$$

and a matrix Cauchy–Schwarz inequality for positive definite matrices $\{A_i\}_{i=1}^n$ and $\{B_i\}_{i=1}^n$ is:

$$\sum_{i=1}^{n} A_i \ \sharp \ B_i \leqslant \left(\sum_{i=1}^{n} A_i\right) \ \sharp \ \left(\sum_{i=1}^{n} B_i\right), \tag{2}$$

also see [6]. In a recent paper [7], Lee obtained a sharp reverse inequality for (2):

Theorem A. Let A_i and B_i be positive definite matrices such that $mA_i \leq B_i \leq MA_i$ for some scalars $0 < m \leq M$ and i = 1, 2, ..., n. Then

$$\left(\sum_{i=1}^n A_i\right) \ \sharp \ \left(\sum_{i=1}^n B_i\right) \leqslant \frac{\sqrt{M} + \sqrt{m}}{2\sqrt[4]{mM}} \sum_{i=1}^n A_i \ \sharp \ B_i.$$

A key feature of this statement is the "sandwich assumption" $mA_i \leq B_i \leq MA_i$. This leads to more general/precise estimates than simple data of bounds for spectra usually found in the reverse literature, like $\sigma(A_i) \subset [r, s]$ and $\sigma(B_i) \subset [r', s']$ for some r, s, r', s' > 0.

Very recently, in order to obtain a reverse matrix Hölder inequality, Bourin et al. [2] extended Theorem A to weighted geometric means. For $\alpha \in [0, 1]$, the weighted geometric mean $A \ddagger_{\alpha} B$ of two positive definite matrices A and B is defined by

$$A \sharp_{\alpha} B := A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{\alpha} A^{1/2},$$

so that $A \sharp_{\alpha} B = A^{1-\alpha} B^{\alpha}$ whenever A and B commute. The following inequality, for positive definite matrices $\{A_i\}_{i=1}^n$ and $\{B_i\}_{i=1}^n$, is a matrix version for (1)

$$\sum_{i=1}^{n} A_i \sharp_{\alpha} B_i \leq \left(\sum_{i=1}^{n} A_i\right) \sharp_{\alpha} \left(\sum_{i=1}^{n} B_i\right)$$

and the main result in [2] is a *ratio* type reverse statement. In this short note we complete it by a *difference* type reverse statement.

2. Reverse Cauchy–Schwarz inequality

We start with a difference type reverse of the matrix Cauchy–Schwarz inequality:

Theorem 1. Let A_i , B_i be positive definite matrices such that $mA_i \leq B_i \leq MA_i$ for some scalars $0 < m \leq M$ and i = 1, 2, ..., n. Then

$$\left(\sum_{i=1}^n A_i\right) \ \sharp \ \left(\sum_{i=1}^n B_i\right) - \sum_{i=1}^n A_i \ \sharp \ B_i \leqslant \frac{\left(\sqrt{M} - \sqrt{m}\right)^2}{4\left(\sqrt{M} + \sqrt{m}\right)} \sum_{i=1}^n A_i.$$

To prove it, we need a well-known lemma. The proof given here is adapted from [1].

2566

Download English Version:

https://daneshyari.com/en/article/4602143

Download Persian Version:

https://daneshyari.com/article/4602143

Daneshyari.com