

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 430 (2009) 52-65

www.elsevier.com/locate/laa

Upper and lower bounds on norms of functions of matrices[☆]

Anne Greenbaum

University of Washington, Mathematics Department, Box 354350, Seattle, WA 98195, United States

Received 3 March 2008; accepted 23 June 2008 Available online 23 August 2008 Submitted by C.-K. Li

Abstract

Given an n by n matrix A, we look for a set S in the complex plane and positive scalars m and M such that for all functions p bounded and analytic on S and throughout a neighborhood of each eigenvalue of A, the inequalities

$$m \cdot \inf\{\|f\|_{\mathscr{L}^{\infty}(S)}: f(A) = p(A)\} \leqslant \|p(A)\| \leqslant M \cdot \inf\{\|f\|_{\mathscr{L}^{\infty}(S)}: f(A) = p(A)\}$$

hold. We show that for 2 by 2 matrices, if *S* is the field of values, then one can take m = 1 and M = 2. We show that for a perturbed Jordan block – a matrix *A* that is an *n* by *n* Jordan block with eigenvalue 0 except that its (n, 1)-entry is ν , with $|\nu| \in (0, 1)$ – if *S* is the unit disk, then m = M = 1. We argue, however, that, in general, due to the behavior of minimal-norm interpolating functions, it may be very difficult or impossible to find such a set *S* for which the ratio M/m is of moderate size. © 2008 Elsevier Inc. All rights reserved.

Keywords: Pick-Nevanlinna interpolation; Blaschke product; Nonnormal matrix; Field of values; Polynomial numerical bull

1. Introduction

In recent years there has been considerable interest in finding sets in the complex plane that can be associated with a given square matrix or bounded linear operator A to give more information than the spectrum alone can provide about the norms of functions of A. Examples include the *field*

^{*} This work was supported in part by NSF Grant DMS-0208353.
E-mail address: greenbau@math.washington.edu

of values or numerical range [14,3,4], the ϵ -pseudospectrum [19], and the polynomial numerical hull of a given degree [16,17,11]. Let S be a set that contains the spectrum of A. One might look for a scalar M (which might or might not depend on A) such that for all functions $p \in \mathscr{H}^{\infty}(S)$, the Hardy space of bounded analytic functions on S with norm $\|p\|_{\mathscr{L}^{\infty}(S)} \equiv \sup_{z \in S} |p(z)|$ (and with the additional requirement that p be analytic in a neighborhood of each eigenvalue of A so that p(A) is well defined), the upper bound

$$\|p(A)\| \leqslant M \cdot \|p\|_{\mathscr{L}^{\infty}(S)} \tag{1}$$

holds.

In this paper, we restrict our attention to n by n matrices A and let $\|\cdot\|$ denote the 2-norm for vectors and the corresponding spectral norm for matrices: $\|A\| \equiv \sup_{\|\mathbf{v}\|=1} \|A\mathbf{v}\|$. We look for sets S where (1) holds and where there is a similar lower bound on $\|p(A)\|$ involving a positive scalar m.

One's first thought might be to look for a positive scalar m such that for all $p \in \mathcal{H}^{\infty}(S)$,

$$m \cdot \|p\|_{\mathscr{L}^{\infty}(S)} \leqslant \|p(A)\|. \tag{2}$$

If S is the spectrum of A, and if A is diagonalizable – $A = V \Lambda V^{-1}$, where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix of eigenvalues and V a matrix whose columns are eigenvectors – then the following inequalities hold:

$$||p||_{\mathscr{L}^{\infty}(S)} \le ||p(A)|| \le \kappa(V) \cdot ||p||_{\mathscr{L}^{\infty}(S)}, \quad \kappa(V) \equiv ||V|| \cdot ||V^{-1}||.$$
 (3)

Hence the scalars m and M in (2) and (1) can be taken to be 1 and $\kappa(V)$, respectively. The scalar m=1 is best possible since, for example, if $p(z)\equiv 1$, then p(A)=I and $\|I\|=1$. If the columns of V are taken to have norm 1 and if the eigenvalues of A are distinct, then the scalar $M=\kappa(V)$ is within a factor of n of optimal, since if $p(\lambda_J)=1$, where J is the index of a row of V^{-1} with maximal norm and $p(\lambda_i)=0$ for $i\neq J$, then

$$||p(A)|| = ||Vp(A)V^{-1}|| = ||V(:, J)V^{-1}(J, :)|| = ||V^{-1}(J, :)||,$$

where V(:, J) denotes the Jth column of V and $V^{-1}(J, :)$ denotes the Jth row of V^{-1} , while

$$\kappa(V) \leqslant \|V\|_F \cdot \|V^{-1}\|_F = \sqrt{n} \cdot \left(\sum_{j=1}^n \|V^{-1}(j,:)\|^2\right)^{1/2} \leqslant n \cdot \|V^{-1}(J,:)\|,$$

where $\|\cdot\|_F$ denotes the Frobenius norm.

It is easy to see, however, that if the set S contains points outside the spectrum of A, then there is no positive scalar m for which (2) holds, since if p is the minimal polynomial of A, then p(A) = 0 but p(z) = 0 only if z is an eigenvalue of A.

One way to circumvent this difficulty is to note that if the degree of the minimal polynomial of A is r, then any function p(A) can be written as a polynomial of degree at most r-1 in A: $p(A) = p_{r-1}(A)$, where p_{r-1} is the polynomial of degree at most r-1 that matches p at the eigenvalues of A and whose derivatives of orders up through t-1 also match those of p at eigenvalues corresponding to a t by t Jordan block. Hence one might look for a set S and a positive scalar m such that for all $p \in \mathcal{H}^{\infty}(S)$

$$m \cdot \|p_{r-1}\|_{\mathscr{L}^{\infty}(S)} \le \|p(A)\|, \tag{4}$$

where p_{r-1} is the polynomial of degree at most r-1 satisfying $p_{r-1}(A) = p(A)$. The largest set S for which (4) holds with m=1 is, by definition, the polynomial numerical hull of degree r-1 [16,17,11].

Download English Version:

https://daneshyari.com/en/article/4602167

Download Persian Version:

https://daneshyari.com/article/4602167

Daneshyari.com