
Managing requirements specifications for product lines – An approach and
industry case study

Magnus Eriksson a,b,*, Jürgen Börstler b, Kjell Borg a

a BAE Systems Hägglunds AB, SE-891 82 Örnsköldsvik, Sweden
b Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden

a r t i c l e i n f o

Article history:
Received 22 November 2007
Received in revised form 22 July 2008
Accepted 22 July 2008
Available online 12 August 2008

Keywords:
Natural-language requirements
specification
Software product line
Feature model
Variability management

a b s t r a c t

Software product line development has emerged as a leading approach for software reuse. This paper
describes an approach to manage natural-language requirements specifications in a software product line
context. Variability in such product line specifications is modeled and managed using a feature model.
The proposed approach has been introduced in the Swedish defense industry. We present a multiple-case
study covering two different product lines with in total eight product instances. These were compared to
experiences from previous projects in the organization employing clone-and-own reuse. We conclude
that the proposed product line approach performs better than clone-and-own reuse of requirements
specifications in this particular industrial context.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Software-intensive defense systems (e.g., vehicles) keep grow-
ing ever more complex. They consist of tightly integrated mechan-
ical, electrical/electronic and software components, which are
usually developed by different, often quite independent, organiza-
tional units. Typically, only few units are manufactured of each sys-
tem, and they are always customized for each specific customer’s
needs. However, there are still many commonalities between sys-
tems. Furthermore, such systems have a very long life span, often
30 years or longer. High levels of reuse and high component quality
are therefore critical factors in a market segment like this.

A promising approach to address these issues is known as soft-
ware product line (SPL) development (Weiss and Lai, 1999; Czar-
necki and Eisenecker, 2000; Clements and Northrop, 2002; Pohl
et al., 2005; Sugumaran et al., 2006; van der Linden et al., 2007).
SPL development has emerged as one of the leading approaches
to software reuse. The basic idea of the SPL approach is to identify
the commonalities in a family of products and share them in an or-
ganized way.

The main contribution of this paper is twofold. First, our tool-
supported product line requirements management approach is
presented. Second, an empirical study is presented where this ap-

proach is applied and evaluated in two large-scale defense pro-
jects. The SPL approach described here builds on PLUSS, our
previously developed product line use case modeling approach
(Eriksson et al., 2005a,b, 2006b). The extended version of PLUSS
provides means for developing and maintaining natural-language
requirements in a product line context. The two main reasons for
extending PLUSS to also include natural-language requirements
was: (a) use cases alone can not describe the whole requirements
space of a non-trivial system (see, e.g., Eriksson et al., 2008); (b)
natural-language requirements specifications are widely used in
industry (see, e.g., Neill and Laplante, 2003).

The remainder of this paper is structured as follows: Section 2
provides a brief introduction to software product lines. Section 3
briefly reviews related work on requirements reuse. Section 4 de-
scribes an extension to the PLUSS (product line use case modeling
for systems and software engineering) approach, to enable man-
agement of natural-language requirements specifications for prod-
uct lines. Section 5 presents extensions to the commercial
requirements management tool Telelogic DOORS developed to
support the approach. Section 6 presents an industrial case study
in which the proposed approach was applied and evaluated in
the domain of software-intensive defense systems. Section 7 sum-
marizes the paper and discusses some future work.

2. Software product lines

SPL development requires an organizational mind shift. When
moving from single system development to product lines, several

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.07.046

* Corresponding author. Address: Department of Computing Science, Umeå
University, SE-901 87 Umeå, Sweden.

E-mail addresses: magnus.eriksson@baesystems.se, magnuse@cs.umu.se
(M. Eriksson), jubo@cs.umu.se (J. Börstler), kjell.borg@baesystems.se (K. Borg).

The Journal of Systems and Software 82 (2009) 435–447

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

mailto:magnus.eriksson@baesystems.se
mailto:magnuse@cs.umu.se
mailto:jubo@cs.umu.se
mailto:kjell.borg@baesystems.se
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


related products must be envisioned together to develop an archi-
tecture/design that can fulfill the requirements for an entire family
of products.

Development in a SPL organization can be divided into two
main activities (Weiss and Lai, 1999); domain engineering and appli-
cation engineering (see Fig. 1):

� The purpose of the domain engineering activity is to develop the
product line’s reusable core assets. The overall goal of core asset
development is to provide a production capability for products
(Northrop, 2002). As illustrated in Fig. 1, some of the key arti-
facts of a product line are its requirements, its architecture
and its components. However, the reusable core assets also
include many other artifacts; for example test cases, budgets,
schedules, specifications, etc. (Clements and Northrop, 2002).
All of these different types of artifacts are developed to be easily
(re)useable within the product line.

� The purpose of the application engineering activity is to generate
new products utilizing the assets developed by domain engi-
neering. The main input to this activity, besides reusable core
assets, is requirements for the new product. During the applica-
tion requirements activity, product requirements are analyzed
and related to the existing product line requirements. The
resulting product requirements will typically include both
(instantiations of) existing product line requirements and new
product specific requirements.

A key distinction between traditional single system develop-
ment with reuse and product line development is that the reusable
assets of a product line are explicitly designed to capture differ-
ences, so-called variability, between products in a product line.
Variability affects all types of artifacts, from requirements to code
(Thiel and Hein, 2002). In the context of product line requirements,
several types of variability can exist. For example, each require-
ment (or group of requirements) can:

� Be mandatory or optional, for all or only some products in a
product line.

� Depend on other requirements to make sense in a system.
� Be mutually exclusive to other requirements.
� Have variations in their details.

3. A brief overview of major requirements-reuse approaches

This section provides a brief overview of some major ap-
proaches for reuse of natural-language requirements. The reason
we limit our survey to natural-language requirements is that
natural-language requirements are the focus of the present ap-
proach and study. Not all of the presented approaches can bee
seen as ‘‘true” product line engineering approaches, however,
they were still included as they were considered of interest to
practitioners in the area. A more comprehensive overview over
requirements reuse in general can for example be found in
(Lam et al., 1997). For a survey of feature modeling approaches,
see (Schobbens et al., 2006); and for a brief overview of ap-
proaches related to product line use case modeling, see (Eriksson
et al., 2006).

3.1. FORE – variability tree and template requirements

In the FORE (Family Of REquirements) approach (Lam, 1998) the
main deliverable is the FORE document. The FORE document con-
tains a decision model in the form of a ‘‘variability tree” and para-
metric template requirements. During product instantiation, this
document is copied by the product developers, who create a prod-
uct requirements document by removing all variability informa-
tion. This is done by traversing the variability tree and selecting
values for all parametric requirements.

Also the FORE approach permits modeling of how product
requirements specifications may be composed from the product
line requirements documentation. However, a fundamental
problem inherent in this ‘‘clone-and-own” approach to
requirements reuse is that each new clone starts a separate
maintenance trajectory. When the FORE document is copied
the link to the original document is lost, i.e., there are two
identical but unrelated copies making change management
very difficult. In other words, a ‘‘double-maintenance” problem
is inflicted on the product in the product line. This is also a
problem for other approaches that rely on copying and editing
for product instantiation (see, e.g., Cybulski and Reed, 2004;
Heumesser and Houdek, 2003; Cheong and Jarzabek, 1998;
Faulk, 2001).

Domain
Analysis

Domain
Design

Domain
Implementation

Application
Requirements

Application
Design

Application
Coding

Requirements Components

Architecture

Reference Architecture Reusable Components
Domain Technology
Reference Requirements

TraceabilityTraceability

Feedback / Adaptations / Reverse Architecting

Legacy Code,
Domain
Expertise

New
Requirements

Domain
Engineering

Application
Engineering

Fig. 1. Components and relationships of a reference process (PRAISE) for software product line development (van der Linden, 2002).

436 M. Eriksson et al. / The Journal of Systems and Software 82 (2009) 435–447



Download English Version:

https://daneshyari.com/en/article/460225

Download Persian Version:

https://daneshyari.com/article/460225

Daneshyari.com

https://daneshyari.com/en/article/460225
https://daneshyari.com/article/460225
https://daneshyari.com

