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(0, 1)-Matrices

We investigate (0, 1)-matrices which are totally nonnegative and

therefore which have all of their eigenvalues equal to nonnegative

real numbers. Such matrices are characterized by four forbidden

submatrices (of orders 2 and 3). We show that the maximum num-

ber of 0s in an irreducible, totally nonnegative (0, 1)-matrix of order

n is (n − 1)2 and characterize those matrices with this number of

0s. We also show that the minimum Perron value of an irreducible,

totally nonnegative (0, 1)-matrix of order n equals 2 + 2 cos
(

2π
n+2

)
and characterize those matrices with this Perron value.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Using a trace argument, McKay et al. [4] obtained a result which was the starting point of our

investigations and which we formulate as follows.

Theorem 1.1. Let A be a (0, 1)-matrix of order n each of whose eigenvalues is positive. Then there is a

permutation matrix P such that PAPt = In + B where B is a (0, 1)-matrix with 0s on and above the main

diagonal. In particular, the eigenvalues of A all equal 1.
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As formulated in [4], Theorem 1.1 asserts that a digraph D each of whose eigenvalues is positive has

a loop at each vertex and does not have any cycles of length strictly greater than 1. In Theorem 1.1, the

matrix A is the adjacency matrix of D; the matrix B is the adjacency matrix of an acyclic digraph.

As a corollary of Theorem 1.1 we get the following result.

Corollary 1.2. Let Abe an irreducible (0, 1)-matrix of order n� 2 eachofwhose eigenvalues is nonnegative.
Then 0 is an eigenvalue of A and hence A is a singular matrix.

Proof. If all eigenvalues of A are positive, then by Theorem 1.1, there is a permutation matrix P such

that PAPt is triangular, and hence A is not irreducible if n� 2. Thus 0 is an eigenvalue of A and A is

singular. �

Since the trace of a (0, 1)-matrix of order n is at most equal to n, the following theorem generalizes

Theorem 1.1.

Theorem 1.3. Let A be a (0, 1)-matrix of order n with trace at most r and with r positive eigenvalues and

n − r zero eigenvalues. Then there is a permutation matrix P such that PAPT = D + B where B is a (0, 1)-
matrix with 0s on and above the main diagonal and D is a (0, 1)-diagonal matrix with r 1s. In particular,

A has r eigenvalues equal to 1, n − r eigenvalues equal to 0, and the trace of A equals r.

Proof. The proof starts by using the technique of [4]. Let the eigenvalues of A be

λ1 � λ2 � · · · λr > 0 = λr+1 = · · · = λn.

Using the arithmetic/geometric mean inequality, we have

1�
trace(A)

r
= λ1 + λ2 + · · · + λr

r
� (λ1λ2 · · · λr)

1/r . (1)

The sum αr of the determinants of the principal submatrices of order r of A equals the sum of the

products of the eigenvalues of A taken r at a time and so equals λ1λ2 · · · λr and is positive. Since A is

an integral matrix, αr is an integer and thus αr � 1. Thus using (1) we get

1�
trace(A)

r
= λ1 + λ2 · · · + λr

r
� (λ1λ2 · · · λr)

1/r � 1. (2)

Hence we have equality throughout in (2). This implies that λ1 = λ2 = · · · = λr , and this common

value equals 1. Thus A has r eigenvalues equal to 1, and n − r eigenvalues equal to 0, and the trace of A

equals r. Since A is a nonnegative matrix, it follows from the classical Perron–Frobenius theory that A

has r irreducible components A1, A2, . . . , Ar each of which has spectral radius (maximum eigenvalue)

1, and all other eigenvalues equal to 0; the remaining irreducible components, if any, are zeromatrices

of order 1. Since each Ai is irreducible, each Ai has at least one 1 in each row and column. Again by the

Perron–Frobenius theory, each Ai is a permutationmatrix corresponding to a permutation cycle. Since

the eigenvalues of Ai are one 1 and then all 0s, we conclude that each Ai has order 1. Thus A has r 1s

and n − r 0s on the main diagonal, and all 0s above the main diagonal. �

Notice that again we conclude that the digraph whose adjacency matrix is A does not have any

cycles of length strictly greater than 1.

From Theorems 1.1 and 1.3, we conclude that if A is a (0,1)-matrix of order nwith either

(i) n positive eigenvalues (the trace of A then equals n by Theorem 1.1), or

(ii) n − 1 positive eigenvalues, one zero eigenvalue, and trace equal to (or at most equal to) n − 1,

thenA is simultaneouslypermutable to a triangularmatrix.Using thearithmetic/geometricmean

inequality as in the proof of Theorem 1.3, we see that if A has n − 1 positive eigenvalues and

one zero eigenvalue, then the trace of A is n − 1 or n. If in (ii) we replace trace equal to n − 1

with trace equal to n, then A need not be simultaneously permutable to a triangular matrix. For

example, the irreducible matrix
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