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Constrained least-squares regression problems, such as the Non-

negative Least Squares (NNLS) problem, where the variables are

restricted to take only nonnegative values, often arise in applica-

tions. Motivated by the recent development of the fast Johnson–

Lindestrauss transform, we present a fast random projection type

approximation algorithm for the NNLS problem. Our algorithm

employs a randomized Hadamard transform to construct a much

smallerNNLSproblemand solves this smaller problemusing a stan-

dard NNLS solver. We prove that our approach finds a nonnegative

solution vector that, with high probability, is close to the optimum

nonnegative solution in a relative error approximation sense. We

experimentally evaluate our approach on a large collection of term-

document data and verify that it does offer considerable speedups

without a significant loss in accuracy. Our analysis is based on a

novel random projection type result that might be of indepen-

dent interest. In particular, given a tall and thin matrix Φ ∈ Rn×d

(n � d) and a vector y ∈ Rd , we prove that the Euclidean length

of Φy can be estimated very accurately by the Euclidean length of

Φ̃y, where Φ̃ consists of a small subset of (appropriately rescaled)

rows of Φ .
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1. Introduction

The Nonnegative Least Squares (NNLS) problem is a constrained least-squares regression problem

where the variables are allowed to take only nonnegative values. More specifically, the NNLS problem

is defined as follows:

Definition 1 (Nonnegative Least Squares (NNLS)). Given a matrix A ∈ Rn×d and a target vector b ∈ Rn,

find a nonnegative vector xopt ∈ Rd such that

xopt = arg min
x∈Rd , x � 0

‖Ax − b‖2
2 . (1)

NNLS is a quadratic optimization problem with linear inequality constraints. As such, it is a convex

optimizationproblemand thus it is solvable (up to arbitrary accuracy) in polynomial time [4]. Inwords,

NNLS seeks to find the best nonnegative vector xopt in order to approximately express b as a strictly

nonnegative linear combination of the columns of A, i.e., b ≈ Axopt .

The motivation for NNLS problems in data mining and machine learning stems from the fact that

given least-squares regression problems on nonnegative data such as images, text, etc., it is natural

to seek nonnegative solution vectors. (Examples of data applications are described in [6].) NNLS is

also useful in the computation of the Nonnegative Matrix Factorization [16], which has received

considerable attention in the past few years. Finally, NNLS is the core optimization problem and the

computational bottleneck in designing a class of Support VectorMachines [22]. Sincemodern datasets

are often massive, there is continuous need for faster, more efficient algorithms for NNLS.

In this paper we discuss the applicability of random projection algorithms for solving constrained

regression problems, and in particular NNLS problems. Our goal is to provide fast approximation

algorithms as alternatives to the existing exact, albeit expensive, NNLS methods. We focus on input

matrices A that are tall and thin, i.e., n � d, and we present, analyze, and experimentally evaluate a

random projection type algorithm for the nonnegative least-squares problem. Our algorithm utilizes

a novel random projection type result which might be of independent interest. We argue that the

proposed algorithm (described indetail in Section3), provides relative error approximation guarantees

for the NNLS problem. Our work is motivated by recent progress in the design of fast randomized

approximation algorithms for unconstrained �p regression problems [10,7].

The following theorem is the main quality-of-approximation result for our randomized NNLS

algorithm.

Theorem 1. Let ε ∈ (0, 1]. Let A ∈ Rn×d and b ∈ Rn be the inputs of the NNLS problem with n � d. If

the input parameter r of the RandomizedNNLS algorithm of Section 3 satisfies

r

log r
�

342c2o(d + 1) log(n)

ε2
, (2)

(for a sufficiently large constant co)
1 then the RandomizedNNLS algorithm returns a nonnegative vector

x̃opt such that∥∥Ax̃opt − b
∥∥2
2

≤ (1 + ε) min
x∈Rd , x � 0

‖Ax − b‖2
2 (3)

holds with probability at least 0.5.2 The running time of the RandomizedNNLS algorithm is

O(nd log(r)) + TNNLS (r, d) . (4)

The latter term corresponds to the time required to exactly solve an NNLS problem on an input matrix of

dimensions r × d.

1 co is an unspecified constant in [19].
2 Note that a small number of repetitions of the algorithm suffices to boost its success probability.
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