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This paper deals with solution of inequality A ⊗ x � b, where A, x

and b are interval matrices with entries defined over idempotent

semiring. It deals also with the computation of a pair of intervals,

(x, y)which satisfies the equation A ⊗ x = B ⊗ y. It will be shown

that this equation may be solved by considering the interval ver-

sion of the iterative scheme proposed in [R.A. Cuninghame-Green,

P. Butkovič, The equation ax = by over (max,+), Theoret. Comput.

Sci. 293 (2003) 3–12].
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1. Introduction

Many problems in the optimization theory and other fields of mathematics are non-linear in the

traditional sense but appear to be linear over idempotent semirings (e.g., see [1,3,6,10]). Idempotency

of the additive law induces that idempotent semirings are (partially) ordered sets. The Residuation

theory [2,5,8] is a suitable tool to deal with inverse problems of order preserving mappings. It is

usually used to solve equations defined over idempotent semiring [1,6,7], for instance the greatest

solution of inequality Ax � b may be computed by means of this theory.

Interval mathematics was pioneered by Moore (see [16]) as a tool for bounding rounding errors

in computer programs. Since then, interval mathematics has been developed into a general meth-

odology for investigating numerical uncertainty in numerous problems and algorithms. In [14] the

idempotent version is addressed. The authors show that idempotent interval mathematics appears to
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be remarkably simpler than its traditional analog. For example, in the traditional interval arithmetic,

multiplication of intervals is not distributive with respect to addition of intervals, while idempo-

tent interval arithmetic keeps this distributivity. This paper deals first with solution of inequality

A ⊗ x � b, where A, x and b are interval matrices (see Proposition 31). When equality is achieved,

according to definition given in [4], the equations system is said weakly solvable since at least one of

its subsystems is solvable. In a second step, the paper deals with the computation of a pair of intervals,

(x, y) which satisfies the equation A ⊗ x = B ⊗ y. It will be shown that this equation may be solved

by considering the interval version of the iterative scheme proposed in [7].

2. Preliminaries

Definition 1. A semiring S is a set endowedwith two internal operations denoted by⊕ (addition) and

⊗ (multiplication), both associative and both having neutral elements denoted by ε and e, respectively,

such that⊕ is also commutative and idempotent (i.e. a ⊕ a = a). The⊗ operation is distributive with

respect to⊕, and ε is absorbing for the product (i.e. ∀a, ε ⊗ a = a ⊗ ε = ε). When⊗ is commutative,

the semiring is said to be commutative.

Semirings canbeendowedwitha canonicalorderdefinedby:a � b iffa = a ⊕ b. Then theybecome

sup-semilattices and a ⊕ b is the least upper bound of a and b. A semiring is complete if sums of

infinite number of terms are always defined, and if multiplication distributes over infinite sums too.

In particular, the sum of all elements of a complete semiring is defined and denoted by � (for ‘top’). A

complete semiring (sup-semilattice) becomes a complete lattice for which the greatest lower bound

of a and b is denoted a ∧ b, i.e., the least upper bound of the (nonempty) subset of all elements which

are less than a and b (see [1, Section 4]).

Example 2 ((max,+) algebra). The set Z = Z ∪ {−∞,+∞} endowed with the max operator as ⊕
and the classical sumas⊗ is a complete idempotent semiring ofwhich ε = −∞, e = 0 and� = +∞
and the greatest lower bound a ∧ b = min(a, b).

Example 3 ((max,min) algebra). The set Z = Z ∪ {−∞,+∞} endowed with the max operator as

⊕ and the min operator as ⊗ is a complete idempotent semiring of which ε = −∞, e = +∞ and

� = +∞ and the greatest lower bound a ∧ b = min(a, b).

Definition 4 (Subsemiring). A subset C of a semiring is called a subsemiring of S if

• ε ∈ C and e ∈ C;
• C is closed for ⊕ and ⊗, i.e, ∀a, b ∈ C, a ⊕ b ∈ C and a ⊗ b ∈ C.

Definition 5 (Principal order ideal). Let S be an idempotent semiring. An order ideal set is a nonempty

subset X of S such that (x ∈ X and y � x) ⇒ y ∈ X . A principal order ideal (generated by x) is an

order ideal, denoted ↓Xx , of the form ↓Xx :={y ∈ S|y � x}.
The residuation theory provides, under some assumptions, greatest solutions to inequalities such

as f (x) � bwhere f is an order preservingmapping (i.e., a � b ⇒ f (a) � f (b)) defined over ordered

sets.

Definition 6 (Residual and residuated mapping). An order preserving mapping f : D → E , where D
and E are ordered sets, is a residuated mapping if for all y ∈ E , the least upper bound of the subset

{x|f (x) � y} exists and belongs to this subset. It is then denoted by f �(y). Mapping f � is called the

residual of f . When f is residuated, f � is the unique order preserving mapping such that

f ◦ f � � IdE and f � ◦ f � IdD , (1)

where Id is the identity mapping respectively on D and E .
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