

Contents lists available at ScienceDirect

Linear Algebra and its Applications

On two inequalities for the Hadamard product and the Fan product of matricesth

Qingbing Liu a,b, Guoliang Chen a,*

ARTICLE INFO

Article history:

Received 23 November 2008 Accepted 25 March 2009 Available online 7 May 2009

Submitted by H. Schneider

AMS classification: 15A15 15A48

Keywords: M-matrix Nonnegative matrix Fan product Hadamard product Spectral radius

ABSTRACT

If A and B are $n \times n$ nonsingular M-matrices, a lower bound on the smallest eigenvalue $\tau(A \bigstar B)$ for the Fan product of A and B is given. In addition, using the estimate on the perron root of nonnegative matrices, we also obtain an upper bound on the spectral radius $\rho(A \circ B)$ for nonnegative matrices A and B. These bounds improve some existing results.

Crown copyright © 2009 Published by Elsevier Inc. All rights reserved.

1. Introduction

For a positive integer n, N denotes the set $\{1, 2, \dots, n\}$. The set of all $n \times n$ complex matrices is denoted by $C^{n \times n}$ and $R^{n \times n}$ denotes the set of all $n \times n$ real matrices throughout.

Let $A = (a_{i,j})$ and $B = (b_{i,j})$ be two real $n \times n$ matrices. Then, $A \ge B(> B)$ if $a_{i,j} \ge b_{i,j}(> b_{i,j})$ for all $1 \le i \le n$. If O is the null matrix and $A \ge O(> O)$, we say that A is a nonnegative (positive)

E-mail address: glchen@math.ecnu.edu.cn (G. Chen).

^a Department of Mathematics, East China Normal University, Shanghai 200241, PR China

^b Department of Mathematics, Zhejiang Wanli University, Ningbo 315100, PR China

^{*} This project is granted financial support from Shanghai Science and Technology Committee (No. 062112065) and Shanghai Priority Academic Discipline Foundation and PhD Program Scholarship Fund of ECNU 2009(PHD2009).

k Corresponding author.

matrix. The spectral radius of A is denoted by $\rho(A)$. If A is a nonnegative matrix, the Perron–Frobenius theorem guarantees that $\rho(A) \in \sigma(A)$, where $\sigma(A)$ denotes the spectrum of A.

For $n \ge 2$, an $n \times n$ $A \in C^{n \times n}$ is reducible if there exists an $n \times n$ permutation matrix P such that

$$P^T A P = \begin{bmatrix} A_{1,1} & A_{1,2} \\ 0 & A_{2,2} \end{bmatrix},$$

where $A_{1,1}$ is an $r \times r$ submatrix and $A_{2,2}$ is an $(n-r) \times (n-r)$ submatrix, where $1 \le r < n$. If no such permutation matrix exists, then A is irreducible. If A is a 1×1 complex matrix, then A is irreducible if its single entry is nonzero, and reducible otherwise.

Let A be an irreducible nonnegative matrix. It is well known that there exists a positive vector u such that $Au = \rho(A)u$, u being called right Perron eigenvector of A.

The Hadamard product of $A \in C^{n \times n}$ and $B \in C^{n \times n}$ is defined by $A \circ B \equiv (a_{i,i}b_{i,i}) \in C^{n \times n}$.

In [3, p. 358], there is a simple estimate for $\rho(A \circ B)$: if $A, B \in \mathbb{R}^{n \times n}$, $A \geqslant O$, and $B \geqslant O$, then $\rho(A \circ B) \leqslant \rho(A)\rho(B)$. From Exercise [3, p. 358], we know this inequality can be very weak by taking B = J, the matrix of all ones. For example, If A = I, B = I, then we have

$$\rho(A \circ B) = \rho(A) = 1 \ll \rho(A)\rho(B) = n$$

when *n* is very large. But also clearly show that equality can occur (let A = I and B = I).

Recently, Fang [4] gave an upper bound for
$$\rho(A \circ B)$$
, that is,

$$\rho(A \circ B) \leq \max_{1 \leq i \leq n} \{ 2a_{i,i}b_{i,i} + \rho(A)\rho(B) - a_{i,i}\rho(B) - b_{i,i}\rho(A) \}$$
 (1)

which is shaper than the bound $\rho(A)\rho(B)$ in [3, p. 358].

For two nonnegative matrices A, B, we will give a new upper bound for $\rho(A \circ B)$ in Section 2. The bound is shaper than the bound $\rho(A)\rho(B)$ in [3, p. 358] and the bound $\max_{1 \le i \le n} \{2a_{i,i}b_{i,i} + \rho(A)\rho(B) - a_{i,i}\rho(B) - b_{i,i}\rho(A)\}$ in [4].

The set $Z_n \subset R^{n \times n}$ is defined by

$$Z_n = \{A = (a_{i,j}) \in R^{n \times n} : a_{i,j} \le 0 \text{ if } i \ne j, i,j = 1,...,n\}$$

the simple sign patten of the matrices in Z_n has many striking consequences. Let $A=(a_{i,j})\in Z_n$ and suppose $A=\alpha I-P$ with $\alpha\in R$ and $P\geqslant O$. Then $\alpha-\rho(P)$ is an eigenvalue of A, every eigenvalue of A lies in the disc $\{z\in C:|z-\alpha|\leqslant \rho(P)\}$, and hence every eigenvalue λ of A satisfies $Re\lambda\geqslant \alpha-\rho(P)$. In particular, A is an M-matrix if and only if $\alpha>\rho(P)$. If A is an A-matrix, one may always write $A=\gamma I-P$ with $\gamma=\max\{a_{i,i}:i=1,\ldots,n\}, P=\gamma I-A\geqslant O$; necessarily, $\gamma>\rho(P)$.

If $A = (a_{i,j}) \in Z_n$, and if we denote $\min\{Re(\lambda) : \lambda \in \sigma(A)\}$ by $\tau(A)$. Basic for our purpose are the following simple facts (see Problem 16, 19 and 28 in Section 2.5 of [3]):

- (i) $\tau(A) \in \sigma(A)$; $\tau(A)$ is called the minimum eigenvalue of A.
- (ii) If A, $B \in Z_n$, and $A \geqslant B$, then $\tau(A) \geqslant \tau(B)$.
- (iii) If $A \in Z_n$, then $\rho(A^{-1})$ is the Perron eigenvalue of the nonnegative matrix A^{-1} , and $\tau(A) = \frac{1}{\rho(A^{-1})}$ is a positive real eigenvalue of A.

Let A be an irreducible nonsingular M-matrix. It is well known that there exists a positive vector u such that $Au = \tau(A)u$, u being called right Perron eigenvector of A.

Let $A \in C^{n \times n}$, $B \in C^{n \times n}$. The *Fan product* of A and B is denoted by $A \bigstar B \equiv C = (c_{i,j}) \in C^{n \times n}$ and is defined by

$$c_{i,j} = \begin{cases} -a_{i,j}b_{i,j}, & \text{if } i \neq j, \\ a_{i,i}b_{i,i}, & \text{if } i = j. \end{cases}$$

If $A, B \in Z_n$ are M-matrices, then so is $A \bigstar B$. In [3, p. 359], a lower bound for $\tau(A \bigstar B)$ was given: Let $A, B \in Z_n$ be M-matrices. Then $A^{-1} \circ B^{-1} \geqslant (A \bigstar B)^{-1}$, and hence $\tau(A \bigstar B) \geqslant \tau(A)\tau(B)$. Fang [4] gave a sharper lower bound for $\tau(A \bigstar B)$, that is,

$$\tau(A \bigstar B) \geqslant \min_{1 \leqslant i \leqslant n} \{ a_{i,i} \tau(B) + b_{i,i} \tau(A) - \tau(A) \tau(B) \}. \tag{2}$$

Download English Version:

https://daneshyari.com/en/article/4602477

Download Persian Version:

https://daneshyari.com/article/4602477

<u>Daneshyari.com</u>