Factorization in noncommutative curves

Søren Jøndrup
Matematisk institutt, Københavns Universitet, Universitetsparken 5, DK-2100 København, Denmark

A R T I CLE INFO

Article history:

Received 19 November 2007
Accepted 30 March 2009
Available online 5 May 2009
Submitted by R. Guralnick

AMS classification:

14A22
14H50
14R
16D60
16G30

Keywords:

Modules
Plane curves
Noncommutative factorization
Ext-relations

A B S T R A C T

A commutative curve $\left(f_{0}\right) \in k\left[x_{1}, \ldots, x_{n}\right]$ has many noncommutative models, i.e. $f \in k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ having f_{0} as its image by the canonical epimorphism κ from $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ to $k\left[x_{1}, \ldots, x_{n}\right]$. In this note we consider the cases, where $n=2$.
If the polymomial f_{0} has an irreducible factor, g_{0}, then in terms of conditions on the noncommutative models of $\left(f_{0}\right)$, we determine, when g_{0}^{2} is a factor of f_{0}.
In fact we prove that in case there exists a noncommutative model f of f_{0} such that $E x t_{A}^{1}(P, Q) \neq 0$ for all point $P, Q \in \mathbf{Z}\left(f_{0}\right)$, where $A=k\langle x, y\rangle /(f)$, then g_{0}^{2} is a factor of f_{0}.
We also note that the "converse" result holds.
Next we apply the methods from above to show that in case an element f in the free algebra has 2 essential different factorizations

$$
f=g h=h_{1} g^{\prime} h_{2},
$$

where $g_{0}=g_{0}^{\prime}$ and with g_{0} irreducible and prime to h_{0}, then

$$
\mathbf{Z}\left(g_{0}\right) \cap \mathbf{Z}\left(\left(h_{1}\right)_{0}\right)=\emptyset,
$$

i.e. g_{0} and $\left(h_{1}\right)_{0}$ do not have a common zero.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider algebras over an algebraically closed field, k, of characteristic 0 . Of particular interest for us here are the cases where the algebras are of the form $k\langle x, y\rangle /(f)$ for more results in this direction see also [3,4].

As usual $k\langle x, y\rangle$ denotes the free algebra on two generators and $0 \neq f \in k\langle x, y\rangle$.

[^0]We have the canonical epimorhism κ from $k\langle x, y\rangle$ to the ordinary polynomialring $k[x, y] . \kappa(f)$ is denoted by f_{0} and we say f is a (noncommutative) model of the curve f_{0} (or $\left(f_{0}\right)$). (Note that a 1dimensional representation of the algebra can be considered as a point on the "commutative" curve $f_{0}=0$.)

Clearly if one adds an element from the commutator ideal, ($[x, y]$), to f, one gets the same commutative curve f_{0}, i.e. the same 1 -dimensional representations.

While for a commutative algebra, $R, E x t_{R}^{1}(P, Q)=0$ for 2 non-isomorphic simple modules P and Q. This is no longer the case for noncommutative algebras. The noncommutative situation is studied in details in [3,4], where [4, Theorem 4] and [4, Theorem 5.2] give particular examples on how knowledge of $E x t_{A}^{1}(P, Q)$ for some simple 1-dimensional A-modules P and Q can give some information on the ideal (f), where $A=k\langle x, y\rangle /(f)$.

In case we have $f=g h_{1} g h_{2}$, for elements f, g, h_{1} and $h_{2} \in k\langle x, y\rangle$, it readily follows from our methods that with $A=k\langle x, y\rangle /(f), E x t_{A}^{1}(P, Q) \neq 0$ for all points P and Q from $\mathbf{Z}\left(g_{0}\right)$. We prove a sort of converse:

Suppose $f_{0}=g_{0} h_{0}$ has a noncommutative model f with $\operatorname{Ext}_{A}^{1}(P, Q) \neq 0$ for all $P, Q \in \mathbf{Z}\left(g_{0}\right)$, then g_{0}^{2} is a factor of f_{0}.

We apply the methods from above to factorization questions in the free algebra $k\langle x, y\rangle$:
As is well known the factorization

$$
x_{1} x_{2} x_{1}+x_{1}=x_{1}\left(x_{2} x_{1}+1\right)=\left(x_{1} x_{2}+1\right) x_{1}
$$

shows that one does not have unique factorisation in the classical sense in $k\left\langle x_{1}, \ldots, x_{m}\right\rangle$, but there is a unique factorization theorem [1, Section 3.3].

We prove that in case $f=g h=h_{1} g^{\prime} h_{2}$, where g_{0} is reduced and prime to h_{0}, then $\mathbf{Z}\left(g_{0}\right) \cap \mathbf{Z}\left(\left(h_{1}\right)_{0}\right)=$ \emptyset.

2. First main result

For the readers convenience we start by recalling the following terminology from [3,4]:
Let $S=k\left\langle x_{1}, \ldots, x_{m}\right\rangle$ denote the free k-algebra on m noncommuting variables. Let ϕ_{P} denote the 1 -dimensional representation of S corresponding to a point $P=\left(a_{1}, \ldots, a_{m}\right) \in A_{k}^{m}$.

We then get maps $D_{i}(; P) \in \operatorname{Der}_{k}\left(S, \operatorname{Hom}_{k}(P, S)\right)$, defined by

$$
\begin{align*}
& D_{i}(a ; P)=0, \quad \text { when } a \in k, \tag{1}\\
& D_{i}\left(x_{j} ; P\right)=\delta_{i j}, \tag{2}\\
& D_{i}(f g ; P)=f D_{i}(g ; P)+D_{i}(f ; P) \phi_{P}(g) . \tag{3}
\end{align*}
$$

The element

$$
D_{k}(f ; P)
$$

is called the noncommutative k-th partial derivative of f with respect to the 1 -dimensional representation of S determined by P and usually we write $g(P)$ in stead of $\phi_{P}(g)$.

In the situation where $A=k\left\langle x_{1}, \ldots, x_{m}\right\rangle / I$ and I is generated as a twosided ideal by f^{1}, \ldots, f^{r}, the left ideal of A generated by the images of the i-th partial derivatives of the generators is denoted by

$$
J_{i}\left(I, f^{1}, \ldots, f^{r} ; P\right)
$$

this is independent of the choice of generators for I [3, Lemma 4.5] and one has the following [3, Proposition 4.7]:

Let $A=k\left\langle x_{1}, \ldots, x_{m}\right\rangle / I$ be a k-algebra and let ϕ_{P} and ϕ_{Q} be two 1 dimensional representations of A corresponding to points P and Q. Suppose $P \neq Q$ then

$$
\begin{equation*}
\operatorname{dim}_{k} E x t_{A}^{1}(P, Q)=m-1-r k J(I ; P)(Q) . \tag{4}
\end{equation*}
$$

In case $m=2$ and $I=(f)$ we get:
Let A denote the algebra $k\langle x, y\rangle /(f)$ and let P and Q be two different points corresponding to 1 -dimensional representations of A. Then

https://daneshyari.com/en/article/4602478

Download Persian Version:

https://daneshyari.com/article/4602478

Daneshyari.com

[^0]: E-mail address: jondrup@math.ku.dk

