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Abstract

A rooted Bethe tree %  is an unweighted rooted tree of k levels in which the vertex root has degree
d, the vertices in level 2 to level (k — 1) have degree (d 4+ 1) and the vertices in level k£ have degree 1
(pendant vertices). In this paper, we derive tight upper and lower bounds on the algebraic connectivity of

(1) a Bethe tree 4 ., and
(2) a tree By k, k, obtained by the union of two Bethe trees % , and % k, having in common the
vertex root.

A useful tool in our study is the Sherman—Morrison formula.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let 4 be a simple undirected graph on n vertices. The Laplacian matrix of & is the n x n matrix
L(%) = D(9) — A(9) where A(%9) is the adjacency matrix of 4 and D (%) is the diagonal matrix
of vertex degrees. It is well known that L (%) is a positive semidefinite matrix and that (0, e) is an
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eigenpair of L(%) where e is the all ones vector. Fiedler [2] proved that  is a connected graph
if and only if the second smallest eigenvalue of L(%) is positive. This eigenvalue is called the
algebraic connectivity of 4 which is here denoted by a(%9).

We recall that a tree is a connected acyclic graph. We recall the notion of a rooted Bethe tree
Bk [4]. The tree A, 1 is a single vertex. For k > 1 the tree %, i consists of a vertex # which is
joined by edges to the roots of each of d copies of %4 ;1. The vertex u is the root of %4 x. We
assume d > 1.

Example 1. The tree %5 4 is

A

We see that 43 4 is a tree of four levels in which the vertex root has degree equal to 3, the vertices
in level 2 and level 3 have degree equal to 4 and the vertices in level 4 have degree equal to 1.

In general, %4 i is a rooted tree of k levels in which the root vertex has degree equal to d, the
vertices in level j (2 < j < k — 1) have degree equal to (d 4+ 1) and the vertices in level k (the
pendant vertices) have degree equal to 1.

If d = 2 then %, \ is a balanced binary tree of k levels. In [6], Molitierno, Neumann and Shader
obtain quite tight upper and lower bounds on the algebraic connectivity of %, . The bounds of
these authors are

1
a(Brk) < — (1
(2F — 2k +3) — 5
and
1
< a9
(2k — 2k +2) — K20 12D ! s ®

2-1=V225 =D 30y cos(5y)

In this paper, we obtain quite tight upper and lower bounds on the algebraic connectivity of

(1) atree B4k, and
(2) atree Ay i, k, obtained by the union of two Bethe trees % «, and %4 k, having a common
vertex root.

A very useful tool in our study is the Sherman—Morrison formula [1,3] which states that if A
is an n X n nonsingular matrix and if

B=A+uVT,

where u and v are n-dimensional column vectors, then
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