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Abstract

This paper develops an identity for additive modifications of a singular value decomposition
(SVD) to reflect updates, downdates, shifts, and edits of the data matrix. This sets the stage for
fast and memory-efficient sequential algorithms for tracking singular values and subspaces. In
conjunction with a fast solution for the pseudo-inverse of a submatrix of an orthogonal matrix,
we develop a scheme for computing a thin SVD of streaming data in a single pass with linear
time complexity: A rank-r thin SVD of a p × q matrix can be computed in O(pqr) time for
r �
√

min(p, q).
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1. The singular value decomposition

The singular value decomposition (SVD) diagonalizes a real matrix X ∈ Rp×q

via left and right rotations by orthonormal matrices U ∈ Rp×p and V ∈ Rq×q , e.g.,
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U�XV = S is diagonal and nonnegative. Equivalently, it decomposes X into a sum of
rank-1 matrices generated by singular value triplets: X = U diag(s)V� =∑i ui siv�i
for singular values si on the diagonal of S and singular vectors ui and vi drawn from
the columns of U and V.

The rank-r thin SVD restricts this sum to the r triplets having the largest-magnitude
singular values. We will write this U diag(s)V� r←X with orthonormal subspace
matrices U ∈ Rp×r , V ∈ Rq×r and singular value vector s ∈ Rr � 0. In signal pro-
cessing, this reduction of X to a product of thin matrices is interpreted as a form
of lossy compression, with the subspace matrices acting as encoding and decoding
operators. By the Schmidt (later Eckart–Young–Mirsky) theorem, the thin SVD is
the optimal rank-r approximation of X under any unitarily invariant norm, including
the Frobenius norm [1]. This licenses the additional interpretation of the thin SVD
as a form of noise suppression, where X is presumed to be a low-rank data matrix
containing measurements contaminated with additive Gaussian noise.

Computing a full SVD is fundamentally an O(pq ·min(p, q))-time problem, mak-
ing decompositions of extremely large matrices infeasible. Shortly after the introduc-
tion of a practical algorithm for computing the SVD on digital computers in the 1960s
[2], research turned to problems of faster methods for computing approximations such
as the thin SVD, as well as updating an SVD to incorporate new data (e.g., [3,4]). In
recent years the practical need for such methods has become acute and the literature
has grown accordingly. Section 5 reviews the recent literature in light of the results
presented below:

(1) A general identity for additive modifications of an SVD (Section 2).
(2) Specializations of this identity to give SVD updates, downdates, and rank-1

modifications with reduced computational complexity (Section 3).
(3) An expanded thin SVD and sequential updating scheme that offers a strictly

linear-time thin SVD in a single pass through a data matrix (Section 4).

The last result has practical value in online settings where data must be incorporated
into the SVD as it arrives, typically because the data is too large to be stored or even
buffered. For example, many computer vision algorithms call for a “running” thin
SVD of a video stream—effectively a data matrix with≈105 rows and an inexhaustible
supply of columns. Financial transaction streams and network activity streams are
even more demanding.

2. Additive modifications

Let real matrix X ∈ Rp×q have rank r and economy SVD USV� = X with S ∈
Rr×r . Let A ∈ Rp×c , B ∈ Rq×c be arbitrary matrices of rank c. We are interested in
the SVD of the sum
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