

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 422 (2007) 295–303

www.elsevier.com/locate/laa

Chebyshev type inequalities involving permanents and their applications $*$

Jiajin Wen^{*}, Wan-lan Wang

Department of Mathematics and Computer Science, Chengdu University, Chengdu, Sichuan 610106, PR China

Received 17 October 2005; accepted 17 October 2006 Available online 6 December 2006 Submitted by S. Friedland

Abstract

We extend the well-known Chebyshev's inequality to some new cases involving permanents under the proper hypotheses. Our main results are

$$
\frac{\operatorname{per}(A \odot B)}{n!} \geqslant \frac{\operatorname{per} A}{n!} \cdot \frac{\operatorname{per} B}{n!} \quad \text{and} \quad \frac{\operatorname{per} A}{\prod_{i=1}^n \sum_{j=1}^n a_{i,j}} \leqslant \frac{\operatorname{per} B}{\prod_{i=1}^n \sum_{j=1}^n b_{i,j}}.
$$

As applications, we consider the problem of finding bounds of the ratios of two functions involving permanents.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: 15D45; 15A15

Keywords: Chebyshev type inequality; Permanent; Generalization; Bound

⁻Supported by the NSF of China (No. 10171073).

[∗] Corresponding author.

E-mail addresses: jiajinwen623@163.com (J.J. Wen), wanlanwang@163.com (W.-l. Wang).

^{0024-3795/\$ -} see front matter \odot 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2006.10.014

296 *J.J. Wen, W.-l. Wang / Linear Algebra and its Applications 422 (2007) 295–303*

1. Introduction and main results

We shall need the following symbols in the well-known monographs [1–3]:

$$
x := (x_1, x_2, \dots, x_n); \quad \alpha := (\alpha_1, \alpha_2, \dots, \alpha_n);
$$

\n
$$
xy := (x_1y_1, x_2y_2, \dots, x_ny_n);
$$

\n
$$
x/y := (x_1/y_1, x_2/y_2, \dots, x_n/y_n), \quad y_i \neq 0 \quad (i = 1, \dots, n);
$$

\n
$$
\mathbb{R}^n :=]-\infty, \infty[^n; \quad \mathbb{R}^n_+ := [0, \infty[^n; \quad \mathbb{R}^n_{++} :=]0, \infty[^n.
$$

For matrices $A = (a_{i,j})_{m \times n}$ and $B = (b_{i,j})_{m \times n}$, we define the Haddamard product as $A \odot$ $B := (a_{i,j} b_{i,j})_{m \times n}$, that is, it is the componentwise product.

Besides these, throughout the paper it is assumed that $n \geq 2$.

The well-known Chebyshev's inequality states: if $a, b \in \mathbb{R}^n$, and $a_1 \leq a_2 \leq \cdots \leq a_n$, $b_1 \leq a_2 \leq \cdots \leq a_n$ $b_2 \leqslant \cdots \leqslant b_n$, then

$$
\frac{1}{n}\sum_{i=1}^{n}a_{i}b_{i}\geqslant\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}\right)\left(\frac{1}{n}\sum_{i=1}^{n}b_{i}\right).
$$
\n(1)

The inequality is reversed for $b_1 \geq b_2 \geq \cdots \geq b_n$. In each case, equality holds in (1) if and only if $a_1 = a_2 = \cdots = a_n$ or $b_1 = b_2 = \cdots = b_n$.

Definition 1. Let $A = (a_{i,j})_{n \times n}$ be an $n \times n$ matrix over a commutative ring. Then the permanent (of order n) of A, written perA, is defined by

$$
\text{per}A := \sum_{\sigma \in S_n} a_{1,\sigma(1)} a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}.
$$

The sum here extends over all elements σ of the symmetric group S_n , that is, over all permutations of the numbers $1, 2, \ldots, n$.

We shall use some symbols similar to those in [2,3]: let $A = (a_{i,j})_{m \times n}$ be an $m \times n$ matrix. Then $A(i_1, i_2, \ldots, i_p | j_1, j_2, \ldots, j_q)$ denotes the $(m - p) \times (n - q)$ submatrix obtained from A by deleting its i_1 [th](#page--1-0), i_2 th, ..., i_p th rows and j_1 th, j_2 th, ..., j_q th col[um](#page--1-0)ns. For any *n*-square matrix $A = (a_{i,j})_{n \times n}$, we will use the following lemma similar to Laplace's expansion theorem for determinants (see [2,3]):

Lemma 1. *The expansion of the permanent according to the* r*th row or the* s*th column*

$$
\text{per}A = \sum_{j=1}^{n} a_{r,j} \text{per}A(r|j) = \sum_{i=1}^{n} a_{i,s} \text{per}A(i|s) \quad (r, s = 1, 2, \dots, n).
$$

We shall generalize the inequality (1) to the following results (4) and (6).

Theorem 1. Let $A = (a_{i,j})_{n \times n}$ and $B = (b_{i,j})_{n \times n}$ be two $n \times n$ matrices, and let $a_{i,j} > 0$ and $b_{i,j} > 0, i, j = 1, 2, \ldots, n$. If

$$
\frac{a_{i,1}}{a_{i+1,1}} \leqslant \frac{a_{i,2}}{a_{i+1,2}} \leqslant \cdots \leqslant \frac{a_{i,n}}{a_{i+1,n}}, \quad i = 1, 2, \ldots, n-1,
$$
\n⁽²⁾

Download English Version:

<https://daneshyari.com/en/article/4603677>

Download Persian Version:

<https://daneshyari.com/article/4603677>

[Daneshyari.com](https://daneshyari.com)