

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 420 (2007) 663-666

www.elsevier.com/locate/laa

L_p Linear discrepancy of totally unimodular matrices

Benjamin Doerr *

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Received 24 June 2003; accepted 28 August 2006 Available online 9 October 2006 Submitted by R.A. Brualdi

Abstract

Let $p \in [1, \infty[$ and $c_p = \max_{a \in [0,1]} ((1-a)a^p + a(1-a)^p)^{1/p}$. We prove that the known upper bound lindisc $p(A) \le c_p$ for the L_p linear discrepancy of a totally unimodular matrix A is asymptotically sharp, i.e.,

$$\sup_{A} \operatorname{lindisc}_{p}(A) = c_{p}.$$

We estimate $c_p = \frac{p}{p+1} \left(\frac{1}{p+1}\right)^{1/p} (1+\varepsilon_p)$ for some $\varepsilon_p \in \left[0,2^{-p+2}\right]$, hence $c_p = 1 - \frac{\ln p}{p} (1+\mathrm{o}(1))$. We also show that an improvement for smaller matrices as in the case of L_∞ linear discrepancy cannot be expected. For any $p \in \mathbb{N}$ we give a totally unimodular $(p+1) \times p$ matrix having L_p linear discrepancy greater than $\frac{p}{p+1} \left(\frac{1}{p+1}\right)^{1/p}$.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: 11K38

Keywords: Linear discrepancy; Totally unimodular matrix; Rounding; Halftoning

1. Introduction and results

Let $p \in [1, \infty[$ and let $A \in \mathbb{R}^{m \times n}$. Denote the rows of A by $a^{(1)}, \ldots, a^{(m)} \in \mathbb{R}^n$. Let $x \in [0, 1]^n$. The L_p linear discrepancy of A with respect to x is

^{*} Tel.: +49 6819325104; fax: +49 6819325199.

$$\operatorname{lindisc}_{p}(A, x) = \min_{y \in \{0,1\}^{n}} \frac{1}{m^{1/p}} \|A(x - y)\|_{p} = \min_{y \in \{0,1\}^{n}} \left(\frac{1}{m} \sum_{i=1}^{m} |a^{(i)} \cdot (x - y)|^{p} \right)^{1/p}.$$

The L_p linear discrepancy of A is lindisc $_p(A) = \max_{x \in [0,1]^n} \text{lindisc}_p(A, x)$.

The matrix A is called *totally unimodular*, if each square submatrix has determinant -1, 0 or 1. In particular, the entries of a totally unimodular matrix are from $\{-1, 0, 1\}$. Put $c_p = \max_{a \in [0,1]} ((1-a)a^p + a(1-a)^p)^{1/p}$. Motivated by an application in image processing, Asano et al. [2] (cf. also the survey Asano [1]) show and estimate

$$\operatorname{lindisc}_{p}(A) \leqslant c_{p} \leqslant 1 - \frac{1}{p+1}. \tag{1}$$

They also note that the *n*-dimensional identity matrix I_n satisfies lindisc $_p(I_n) = \frac{1}{2}$ for all p and n. This shows that the first inequality in (1) is sharp for $p \le 3$.

The objective of this note is to improve the lower bound for $p \ge 3$. We show that for all $n \in \mathbb{N}$, there is a totally unimodular matrix $A \in \{0, 1\}^{(n+1) \times n}$ such that

$$\operatorname{lindisc}_{p}(A) \geqslant c_{p}(1 + \operatorname{o}(1))$$

with o(1) term depending on n only. Estimating c_p tighter than in [2] yields

$$\frac{p}{p+1} \left(\frac{1}{p+1}\right)^{1/p} \leqslant c_p \leqslant \frac{p}{p+1} \left(\frac{1}{p+1}\right)^{1/p} (1+2^{-p+2}).$$

Thus $c_p=1-\frac{\ln p}{p}(1+\mathrm{o}(1))$. Finally, we give for any $p\in\mathbb{N}$ a totally unimodular $(p+1)\times p$ matrix A such that $\mathrm{lindisc}_p(A)>\frac{p}{p+1}\left(\frac{1}{p+1}\right)^{1/p}$. This shows that an improvement of (1) for smaller matrices as was recently proven for the L_∞ linear discrepancy (see Section 3) cannot exist.

2. Proofs of the main results

Note first that $c_p = \max_{a \in [0, \frac{1}{2}]} ((1-a)a^p + a(1-a)^p)^{1/p}$ due to symmetry. Since the case $p \le 3$ was already completely solved in [2], we assume $p \ge 3$ in the following. We prove the following lower bound.

Theorem 1. For all $p \ge 3$ and all $n \in \mathbb{N}$, there is a totally unimodular matrix $A \in \{0, 1\}^{(n+1) \times n}$ such that

$$\operatorname{lindisc}_{p}(A) \geqslant c_{p}(1 + \operatorname{o}(1))$$

with o(1) term depending on n only.

Proof. Let $a \in \left]0, \frac{1}{2}\right]$ and $n \in \mathbb{N}$ be sufficiently large. Define $A \in \{0, 1\}^{(n+1)\times n}$ by $a_{ij} = 1$ if and only if i = j or i = n + 1. Clearly, A is totally unimodular. Let $x = a\mathbf{1}_n \in \mathbb{R}^n$. Let $y \in \{0, 1\}^n$ such that $\|A(x - y)\|_p$ is minimal. Let k be the number of $i \in \{1, \ldots, n\}$ such that $y_i = 1$. Then

$$||A(x-y)||_p^p = (n-k)a^p + k(1-a)^p + |na-k|^p =: f(k).$$

Note that this value only depends on the number k, but not on the distribution of the ones in y. f viewed as function on the reals is convex and has a minimum at $k_0 = an - \left(\frac{(1-a)^p - a^p}{p}\right)^{1/(p-1)}$. This yields

Download English Version:

https://daneshyari.com/en/article/4603803

Download Persian Version:

https://daneshyari.com/article/4603803

<u>Daneshyari.com</u>